参考文献/References:
[1]ZHANG Y, STAAB E S, SLAUGHTER D C, et al. Automated weed control in organic row crops using hyper spectral species identification and thermal micro-dosing[J]. Crop Protection, 2012, 41: 96-105.
[2]胡静涛,高雷,白晓平,等. 农业机械自动导航技术研究进展[J]. 农业工程学报,2015,31(10):1-10.
[3]安秋,李志臣,姬长英,等. 基于光照无关图的农业机器人视觉导航算法[J].农业工程学报,2009,25(11):208-212.
[4]JIANG G Q,WANG X J,WANG Z H,et al. Wheat rows detection at the early growth stage based on Hough transform and vanishing point[J]. Computers and Electronics in Agriculture, 2016, 123:211-223.
[5]高国琴,李明. 基于K-means算法的温室移动机器人导航路径识别[J].农业工程学报,2014,30(7): 25-33.
[6]罗陆锋,邹湘军,熊俊涛,等. 自然环境下葡萄采摘机器人采摘点的自动定位[J].农业工程学报,2015,31(2):14-21.
[7]熊俊涛,邹湘军,王红军,等. 基于Retinex图像增强的不同光照条件下的成熟荔枝识别[J]. 农业工程学报,2013,29(12):170-178.
[8]GE C, BOSSU J, JONES G, et al. Crop/weed discrimination in perspective agronomic images[J]. Computers and Electronics in Agriculture, 2008, 60(1):49-59.
[9]刁智华,赵明珍,宋寅卯,等. 基于机器视觉的玉米精准施药系统作物行识别算法及系统实现[J].农业工程学报,2015,31(7):47-52.
[10]司永胜,姜国权,刘刚,等. 基于最小二乘法的早期作物行中心线检测方法[J]. 农业机械学报,2010,41(7):163-167.
[11]姜国权,杨小亚,王志衡,等. 基于图像特征点粒子群聚类算法的麦田作物行检测[J]. 农业工程学报,2017,33(11):165-170.
[12]何洁,孟庆宽,张漫,等. 基于边缘检测与扫描滤波的农机导航基准线提取方法[J]. 农业机械学报,2014,45(增刊):265-270.
[13]孟庆宽,张漫,杨耿煌,等.自然光照下基于粒子群算法的农业机械导航路径识别[J].农业机械学报,2016,47(6): 11-20.
[14]刁智华,吴贝贝,毋媛媛,等. 基于最大正方形的玉米作物行骨架提取算法[J]. 农业工程学报,2015,31(23):168-172.
[15]陈子文,李伟,张文强,等. 基于自动Hough变换累加阈值的蔬菜作物行提取方法研究[J]. 农业工程学报,2019,35(22):314-322.
[16]关卓怀,陈科尹,丁幼春,等.水稻收获作业视觉导航路径提取方法[J].农业机械学报,2020,51(1):19-28.
[17]杨洋,张亚兰,苗伟,等.基于卷积神经网络的玉米根茎精确识别与定位研究[J]. 农业机械学报,2018,49(10):46-53.
[18]RAHMAN M T, KEHTARNAVAZ N, RAZLIGHI Q R. Using image entropy maximum for auto exposure[J].Journal of Electronic Imaging, 2011, 20(1):1917-1929.
[19]杨作廷,阮萍,翟波. 基于图像熵的高动态范围场景的自动曝光算法[J].光子学报,2013,42(6): 742-746.
[20]陈娇,姜国权,杜尚丰,等. 基于垄线平行特征的视觉导航多垄线识别[J]. 农业工程学报,2009,25(12):107-113.
[21]姜国权,柯杏,杜尚丰,等. 基于机器视觉的农田作物行检测[J]. 光学学报,2009,29(4): 1015-1020.
[22]姜国权,柯杏,杜尚丰,等. 基于机器视觉和随机方法的作物行提取算法[J].农业机械学报,2008,39(11): 85-88,93.
[23]KARABOGA D. An idea based on honey bee swarm for numerical optimization[R]. Turkey: Computer Engineering Department, Engineering Faculty, Erciyes University,2005.
[24]MEYER G E, NETO J C. Verification of color vegetation indices for automated crop imaging applications[J]. Computer and Electronics in Agriculture, 2008, 63(2): 282-293.
相似文献/References:
[1]许伟栋,赵忠盖.基于卷积神经网络和支持向量机算法的马铃薯表面缺陷检测[J].江苏农业学报,2018,(06):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
XU Wei-dong,ZHAO Zhong-gai.Potato surface defects detection based on convolution neural networks and support vector machine algorithm[J].,2018,(04):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
[2]李颀,杨军.基于多分辨率特征融合的葡萄尺寸检测[J].江苏农业学报,2022,38(02):394.[doi:doi:10.3969/j.issn.1000-4440.2022.02.013]
LI Qi,YANG Jun.Grape size detection based on multi-resolution feature fusion[J].,2022,38(04):394.[doi:doi:10.3969/j.issn.1000-4440.2022.02.013]
[3]翟先一,魏鸿磊,韩美奇,等.基于改进YOLO卷积神经网络的水下海参检测[J].江苏农业学报,2023,(07):1543.[doi:doi:10.3969/j.issn.1000-4440.2023.07.011]
ZHAI Xian-yi,WEI Hong-lei,HAN Mei-qi,et al.Underwater sea cucumber identification based on improved YOLO convolutional neural network[J].,2023,(04):1543.[doi:doi:10.3969/j.issn.1000-4440.2023.07.011]
[4]漆海霞,杨泽康,陈宇,等.农业信息采集机器人关键技术研究现状与发展趋势[J].江苏农业学报,2024,(07):1351.[doi:doi:10.3969/j.issn.1000-4440.2024.07.022]
QI Haixia,YANG Zekang,CHEN Yu,et al.Research status and development trend of key technologies of agricultural information acquisition robot[J].,2024,(04):1351.[doi:doi:10.3969/j.issn.1000-4440.2024.07.022]
[5]丁寅,陈明,栗征,等.基于全局图推理与改进三维动态卷积的鱼类摄食行为分析[J].江苏农业学报,2024,(10):1863.[doi:doi:10.3969/j.issn.1000-4440.2024.10.011]
DING Yin,CHEN Ming,LI Zheng,et al.Fish feeding behavior analysis based on global graph reasoning and improved three-dimensional dynamic convolution[J].,2024,(04):1863.[doi:doi:10.3969/j.issn.1000-4440.2024.10.011]