参考文献/References:
[1]陈丽,樊民周,卫军锋,等. 陕西辣椒病毒病的毒原鉴定及化学防治药剂筛选[J]. 西北农林科技大学学报,2007,35(1):121-126.
[2]徐广春,顾中言,徐德进,等. 5种杀虫剂对设施大棚辣椒蚜虫的防治效果[J]. 农药,2013,52(11):844-845.
[3]吴明峰,高尚,杨耀,等. 棉铃虫和烟青虫初孵幼虫对植物顶尖嫩叶的偏好性差异[J]. 植物保护,2016,42(3):63-69.
[4]李北兴,李俊杰,高杨杨,等. 山东省露地辣椒病虫害的化学防治及高产稳产策略[J].农药科学与管理,2018,39(1):57-62.
[5]袁会珠,杨代斌,闫晓静,等. 农药有效利用率与喷雾技术优化[J]. 植物保护,2011,37(5):14-20.
[6]XU L Y, ZHU H P, OZKAN H E, et al. Droplet evaporation and spread on waxy and hairy leaves associated with type and concentration of adjuvants[J]. Pest Management Science, 2011, 67: 842-851.
[7]徐广春,顾中言,徐德进,等. 常用农药在水稻叶片上的润湿能力分析[J]. 中国农业科学,2012,45(9):1731-1740.
[8]KOLYVA F, STRATAKIS E, RHIZOPOULOU S, et al. Leaf surface characteristics and wetting in Ceratoniasiliqua L.[J]. Flora, 2012, 207(8): 551-556.
[9]ZHU L, GE J R, QI Y Y, et al. Droplet impingement behavior analysis on the leaf surface of Shu-ChaZao under different pesticide formulations[J]. Computers and Electronics in Agriculture, 2018, 144: 16-25.
[10]徐广春,顾中言,徐德进,等. 稻叶表面特性及雾滴在倾角稻叶上的沉积行为[J].中国农业科学,2014,47(21):4280-4290.
[11]范仁俊,张晓曦,周璐,等. 利用OWRK法预测桃叶表面润湿性能的研究[J]. 农药学学报,2011,13(1): 79-83.
[12]VAN OSS C J, CHAUDHURY M K, GOOD R J. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems[J]. Chemical Reviews, 1988, 88: 927-941.
[13]张晨辉,赵欣,雷津美,等. 非离子表面活性剂Triton X-100溶液在不同生长期小麦叶片表面的润湿行为[J]. 物理化学学报,2017,33(9):1846-1854.
[14]FERNANDEZ V, KHAYET M. Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure[J]. Frontiers in Plant Science, 2015, 6: 510.
[15]徐广春,顾中言,徐德进,等. 辣椒叶片表观表面自由能的计算方法[J].中国农业科学,2018,51(16):3084-3094.
[16]陈晓磊. 固体聚合物表面接触角的测量及表面能研究[D]. 长沙:中南大学,2012.
[17]GASKIN R E, STEELE K D, FORSTER W A. Characterising plant surfaces for spray adhesion and retention[J]. New Zealand Plant Protection, 2005,58: 179-183.
[18]FERNNDEZ V, SANCHO-KNAPIK D, GUZMAN P, et al. Wettability, polarity, and water absorption of holm oak leaves: effect of leaf side and age[J]. Plant Physiology, 2014, 166(1): 168-180.
[19]PUENTE D W M, BAUR P. Wettability of soybean (Glycine max L.) leaves by foliar sprays with respect to developmental changes[J]. Pest Management Science, 2011, 67: 798-806.
[20]TAYLOR P. The wetting of leaf surface[J]. Current Opinion in Colloid & Interface Science, 2011, 16(4): 326-334.
[21]KHAYET M, FERNNDEZ V. Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions[J]. Theoretical Biology and Medical Modelling, 2012, 9: 45.
[22]BAUER S, SCHULTE E, THIER H P. Composition of the surface waxes from bell pepper and eggplant[J]. European Food Research and Technology, 2005, 220(1): 5-10.
[23]REVILLA P, FERNNDEZ V, ALVAREZ-LGLESIAS L, et al. Leaf physico-chemical and physiological properties of maize (Zea mays L.) populations from different origins[J]. Plant Physiology Biochemistry, 2016, 107: 319-325.
[24]GASKIN R E, PATHAN A K. Characterising plant surfaces and adjuvant interactions to improve pesticide spray retention and coverage on avocados[J]. New Zealand Avocado Growers’ Association Annual Research Report, 2006, 6: 63-70.
相似文献/References:
[1]林 涛,樊建麟,杨东顺,等.甜椒中噻苯隆的测定及其残留动态[J].江苏农业学报,2016,(03):694.[doi:10.3969/j.issn.1000-4440.2016.03.032]
LIN Tao,FAN Jian-lin,YANG Dong-shun,et al.Determination of thidiazuron and its dissipation behavior in pimiento[J].,2016,(04):694.[doi:10.3969/j.issn.1000-4440.2016.03.032]