[1]孙叶,刘红,马辉,等.兰属植物EST-SSR标记开发及应用[J].江苏农业学报,2020,(03):681-688.[doi:doi:10.3969/j.issn.1000-4440.2020.03.021]
 SUN Ye,LIU Hong,MA Hui,et al.Development and application of EST-SSR marker in Cymbidium[J].,2020,(03):681-688.[doi:doi:10.3969/j.issn.1000-4440.2020.03.021]
点击复制

兰属植物EST-SSR标记开发及应用()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年03期
页码:
681-688
栏目:
园艺
出版日期:
2020-06-30

文章信息/Info

Title:
Development and application of EST-SSR marker in Cymbidium
作者:
孙叶12刘红2马辉2单东方2曹宏2包建忠2陈秀兰2赵国琦1
(1.扬州大学动物科学与技术学院,江苏扬州225009;2.江苏里下河地区农业科学研究所,江苏扬州225007)
Author(s):
SUN Ye12LIU Hong2MA Hui2SHAN Dong-fang2CAO Hong2BAO Jian-zhong2CHEN Xiu-lan2ZHAO Guo-qi1
(1.College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China;2.Institute of Agricultural Sciences of the Lixiahe District in Jiangsu Province, Yangzhou 225007, China)
关键词:
兰属植物EST-SSR标记遗传多样性亲缘关系
Keywords:
Cymbidiumexpressed sequence tag-simple sequence repeat (EST-SSR) markergenetic diversitygenetic relationship
分类号:
S682
DOI:
doi:10.3969/j.issn.1000-4440.2020.03.021
文献标志码:
A
摘要:
本研究利用兰属植物杂交种转录组测序数据开发EST-SSR标记,分析标记的多态性及兰属种质的遗传多样性,为兰属植物种质资源的创新和分类研究提供参考。结果表明,转录组测序分析获得113 780条Unigene,从中共识别到23 709个SSR位点,SSR位点出现频率为20.84%。从设计的200对引物中筛选出20对具有多态性,并且扩增条带大小与预期相符的EST-SSR标记引物,对48份兰属种质材料进行PCR扩增,平均多态位点数为3.0,共检测到81.00个等位基因,平均每对引物检测到4.05个等位基因。观测杂合度平均值为0.320 8,期望杂合度平均值为0.507 0;Shannon’s信息指数的变化范围为0.233 8~1.472 4,平均值为0.932 1,多态信息含量为0.110 3~0.662 2。对4个参试兰属植物种群进行遗传多样性分析,春兰和大花蕙兰的F1杂交种群与大花蕙兰种群亲缘关系较近,与春兰种群的亲缘关系较远。聚类分析结果表明,遗传相似系数为0.72时,48份种质聚成7类,春兰和大花蕙兰的F1代杂交种群大多聚入第I类,春兰种群聚入第V类,第II类、第III类、第IV类、第VII类均为大花蕙兰种群。
Abstract:
Expressed sequence tag-simple sequence repeat (EST-SSR) markers were developed based on transcriptome sequencing, the polymorphism of markers and the genetic diversity of Cymbidium germplasms were analyzed in order to provide reference for the innovation and classification of resources. The results showed that 113 780 unigenes were obtained from transcriptome sequencing, a total of 23 709 SSR loci were detected in the unigene with the frequency of 20.84%. In addition, 20 pairs of EST-SSR primers with polymorphism were selected from 200 primers, and the size of amplified bands was in accordance with the expectation. Moreover, 48 Cymbidium germplasms were amplified by PCR, and the average number of polymorphic loci was 3.0. A total of 81.00 alleles were observed, with an average of 4.05 alleles per locus. The mean values of observed heterozygosity and expected heterozygosity were 0.320 8 and 0.507 0, respectively. Shannon′s information index ranged from 0.233 8 to 1.472 4, and the average value was 0.932 1. The polymorphic information content(PIC) ranged from 0.110 3 to 0.662 2. The F1 population of Cymbidium georingii and Cymbidium hybridum was close to the population of C. hybridum, and far away the population of C.georingii. Cluster analysis results indicated that 48 germplasms were grouped into seven groups at the genetic similarity coefficient of 0.72, the F1 population of C.georingii and C. hybridum was grouped into class I, the population of C.georingii was grouped into class V, and class II, class III, class IV and class VII were the population of C. hybridum.

参考文献/References:

[1]朱根发,王碧青, 陈明莉,等.大花蕙兰与兰属植物种间杂交研究[J].植物学通报, 2005,22(4):445-448.
[2]索娜娜. 基于铁皮石斛EST-SSR标记开发的兰科植物遗传多样性分析[D].杭州:杭州师范大学,2012.
[3]陈程. 蝴蝶兰属EST-SSR标记开发及其在兰属上的转移性[D].合肥:安徽农业大学,2012.
[4]XIA K, YE X, ZHANG M. Isolation and characterization of nine microsatellite markers for Cymbidium sinense[J]. Hortscience, 2008, 43(6): 1925-1926.
[5]MOE K T, ZHAO W, SONG H S, et al. Development of SSR markers to study diversity in the genus Cymbidium[J]. Biochemical Systematics and Ecology, 2010, 38(4): 585-594.
[6]HYUN Y S, KIM J, CHUNG K W. Development of polymorphic microsatellite markers for Cymbidium goeringii (Orchidaceae)[J]. American Journal of Botany, 2012, 99(5):193-198.
[7]ISABEL L P, PARK J R, LEE G S, et al. Development of EST-SSR markers and analysis of genetic relationship it’s resources in hexaploid oats[J]. Journal of Crop Science and Biotechnology, 2019, 22(3): 243-251.
[8]韩凤,刘春雷,罗川,等. 基于EST-SSR标记的茅苍术种质资源遗传多样性分析[J].中国野生植物资源,2019, 38(4):30-34.
[9]杜晓华,杨雅萍,朱小佩,等. 三色堇转录组SSR分析及分子标记开发[J].园艺学报,2019,46(4):797-806.
[10]杨旭,杨志玲,谭美,等. 厚朴转录组特征分析及EST-SSR标记的开发[J].核农学报, 2019,33(7):1318-1329.
[11]李小白,向林,罗洁,等.建兰转录本的微卫星序列和单核苷酸多态性信息分析[J].浙江大学学报(农业与生命科学版), 2014,40(4):463-472.
[12]李小白,金凤,金亮,等.利用建兰转录数据开发genic-SSR标记[J].农业生物技术学报,2014,22(8):1046-1056.
[13]金凤,李小白,金亮,等. Genic-SSR对中国兰的遗传背景分析[J].植物遗传资源学报,2016, 17(1):183-188.
[14]HUANG Y, LI F, CHEN K. Analysis of diversity and relationships among Chinese orchid cultivars using EST-SSR markers[J]. Biochemical Systematics and Ecology, 2010, 38(1): 93-102.
[15]LIU X, HUANG Y, LI F, et al. Genetic diversity of 129 spring orchid (Cymbidium goeringii) cultivars and its relationship to horticultural types as assessed by EST-SSR markers[J]. Scientia Horticulturae, 2014, 174: 178-184.
[16]张亚楠,杨柏云,熊冬金,等.寒兰转录组SSR信息分析及其分子标记开发[J].南昌大学学报(理科版), 2017,41(3):249-254.
[17]朱根发,吕复兵,王碧青,等. 大花蕙兰品种的染色体数目分析[J].园艺学报, 2006, 33(2):417-421.
[18]谢佩吾,李早文,伍爱萍,等. 17个杂交兰及3个大花蕙兰品种的染色体研究[J].广东农业科学, 2015,42(8):26-28.
[19]LI X, JIN F, JIN L, et al. Development of Cymbidium ensifoliumgenic-SSR markers and their utility in genetic diversity and population structure analysis in cymbidiums[J]. BMC Genetics, 2014, 15(1): 124.
[20]朱根发. 墨兰和大花蕙兰遗传多样性及其杂种后代的分子评价[D].广州:华南农业大学,2006.
[21]鲁迪.春剑和大花蕙兰种间杂交种子无菌萌发及杂交后代的RAPD分析[D].成都:四川农业大学,2010.
[22]杨玉霞,陈雪飞,张美,等.基干主成分及聚类分析的虎杖产量与品质的综合评价[J].江苏农业科学,2018,46(2):96-99.
[23]彭靖茹,李朝昌,檀业维,等. 基于SSR分子标记的广西德保县和隆林县野生古茶树聚类分析[J].南方农业学报,2019,50(1):1-7.

备注/Memo

备注/Memo:
收稿日期:2019-12-05基金项目:江苏省农业科技自主创新基金项目[CX(17)2012];江苏省农业种质资源保护与利用平台资助项目(JSGB2018-01)作者简介:孙叶(1978-),女,江苏武进人,硕士,副研究员,主要从事花卉遗传育种研究。(E-mail)sunye9999@126.com通讯作者:赵国琦,(E-mail)gqzhao@yzu.edu.cn
更新日期/Last Update: 2020-07-14