[1]张洁,宋怡轩,张鑫磊,等.不同类型稻田中全程氨氧化微生物的分异特征[J].江苏农业学报,2020,(03):584-590.[doi:doi:10.3969/j.issn.1000-4440.2020.03.008]
 ZHANG Jie,SONG Yi-xuan,ZHANG Xin-lei,et al.Differentiation characteristics of complete ammonia-oxidizing microorganisms in different types of paddy soils[J].,2020,(03):584-590.[doi:doi:10.3969/j.issn.1000-4440.2020.03.008]
点击复制

不同类型稻田中全程氨氧化微生物的分异特征()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年03期
页码:
584-590
栏目:
耕作栽培·资源环境
出版日期:
2020-06-30

文章信息/Info

Title:
Differentiation characteristics of complete ammonia-oxidizing microorganisms in different types of paddy soils
作者:
张洁12宋怡轩12张鑫磊13张耀鸿1
(1.南京信息工程大学,气象灾害预报预警与评估协同创新中心/江苏省农业气象重点实验室,江苏南京210044;2.中国科学院南京土壤研究所,土壤与农业可持续发展国家重点实验室,江苏南京210008;3.山西省气候中心,山西太原030006)
Author(s):
ZHANG Jie12SONG Yi-xuan12ZHANG Xin-lei13ZHANG Yao-hong1
(1.Nanjing University of Information Science and Technology, Collaborative Innovation Center for Forecast and Evaluation of Meteorological Disasters/Jiangsu Provincial Key Laboratory of Agricultural Meteorology, Nanjing 210044, China;2.State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;3.Shanxi Climate Center, Taiyuan 030006, China)
关键词:
稻田全程氨氧化细菌氨氧化细菌氨氧化古菌氨氧化潜力
Keywords:
paddy soilscomplete ammonia oxidizers(comammox)ammonia-oxidizing archaea(AOA)ammonia-oxidizing bacteria(AOB)potential of ammonia oxidation
分类号:
S511.061
DOI:
doi:10.3969/j.issn.1000-4440.2020.03.008
文献标志码:
A
摘要:
选用微碱性氮贫瘠的上海市崇明岛稻田和微酸性氮丰富的南京市稻田剖面(0~50 cm),比较研究稻田土壤中氨氧化微生物类群丰度的差异及其环境驱动机制,评价其与氨氧化潜力的内在关系。结果表明,崇明稻田的净硝化速率为12.82~22.30 mg/(kg·d),明显高于南京稻田
[4.26~7.46 mg/(kg·d)]。崇明稻田土壤剖面的Comammox amoA基因总拷贝数(Clade A与Clade B之和)均值为1 g 8.8×106拷贝,是南京稻田的2.4倍,且Clade A与Clade B的比值范围为2.5~12.7,证实了Comammox存在于2种不同类型的稻田土壤中。崇明稻田和南京稻田剖面的氨氧化细菌(AOB)的amoA基因拷贝数均值分别为1 g 3.75×108拷贝和1.23×108拷贝,氨氧化古菌(AOA)的amoA基因拷贝数均值分别为1 g 2.05×107拷贝和0.35×107拷贝,这2种菌群基因拷贝数均在10.1~20.0 cm土层达到最高。回归分析发现,2个稻田中氨氧化细菌(AOB)对氨氧化潜力的贡献率达到90%~94%,而Comammox仅为3%左右,表明氨氧化细菌(AOB)在氨氧化过程中发挥主要作用。
Abstract:
In this study, the alkaline coastal paddy field profile (0-50 cm) with low nitrogen and acidic Nanjing paddy field profile with high nitrogen were selected to compare the abundance of ammonia-oxidizing microorganisms in paddy soils and its environmental driving mechanism, and to evaluate its internal relationship with ammonium oxidation potential was evaluated. The results showed that the net nitrification rate of coastal paddy fields ranged from 12.82 mg/(kg·d) to 22.30 mg/(kg·d), which was significantly higher than that of Nanjing paddy fields
[4.26-7.46 mg/(kg·d)]. The average number of total copies of comammox amoA gene (the sum of Clade A and Clade B) in the soil profile of coastal paddy fields was 8.8×106 copies per gram, which was 2.4 times greater than that of Nanjing paddy fields, confirming that comammox existed in two different types of paddy fields. In addition, the ratio of Clade A to Clade B ranged from 2.5 to 12.7. The average copy number of amoA gene of ammonia-oxidizing bacteria(AOB) in coastal and Nanjing paddy fields was 3.75×108 copies per gram and 1.23×108 copies per gram, respectively. The average copy number of amoA gene of ammonia-oxidizing archaea (AOA) was 2.05×107 copies per gram and 0.35×107 copies per gram, respectively. The abundance of these two bacteria were the highest in 10.0-20.0 cm soil layer. The results of regression analysis indicated that AOB contributed 90%-94% to the potential of ammonia oxidation in the two paddy fields, while comammox only contributed about 3%, indicating that AOB could play a major role in ammonia oxidation in the two soils.

参考文献/References:

[1]贺纪正,张丽梅. 氨氧化微生物生态学与氮循环研究进展[J].生态学报,2009,29(1):406-415.
[2]KNNEKE M,BERNHARD A E,DE LA TORRE J R,et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005, 437(7058):543-546.
[3]COSTA E, PREZ J, KREFT J U. Why is metabolic labour divided in nitrification?[J] Trends in Microbiology, 2006, 14(5): 213-219.
[4]DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583): 504-509.
[5]VAN KESSEL M A H J,SPETH D R,ALBERTSEN M, et al.Complete nitrification by a single microorganism[J]. Nature,2015, 528(7583): 555-559.
[6]PALOMO A, JANE F S, GLAY A, et al. Metagenomic analysis of rapid gravity sand filter microbial communities suggests novel physiology of Nitrospira spp[J]. ISME Journal, 2016, 10(11): 2569-2581.
[7]王梅,王智慧,石孝均,等. 长期不同施肥量对全程氨氧化细菌丰度的影响[J]. 环境科学, 2018, 39(10): 4727-4734.
[8]曹彦强,王智慧,莫永亮,等. 施肥和淹水管理对水稻土氨氧化微生物数量的影响[J]. 土壤学报, 2019, 56(4): 1004-1011.
[9]PROSSER J I, NICOL G W. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation[J]. Trends in Microbiology, 2012, 20(11): 523-531.
[10]SUZUKI I, DULAR U, KWOK S C. Ammonia and ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts[J]. Journal of Bacteriology, 1974, 120(1): 556-558.
[11]MARTENS-HABBENA W,BERUBE P M,URAKAWA H,et al. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria[J]. Nature, 2009, 461(7266): 976-979.
[12]LU L, HAN W, ZHANG J, et al. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea[J]. ISME Journal, 2012, 6(10): 1978-1984.
[13]JIA Z J, CONRAD R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil[J]. Environmental Microbiology, 2009, 11(7): 1658-1671.
[14]XIA W, ZHANG C, ZENG X, et al. Autotrophic growth of nitrifying community in an agricultural soil[J]. ISME Journal, 2011, 5(7): 1226-1236.
[15]KITS K D, SEDLACEK C J, LEBEDEVA E V, et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle[J]. Nature, 2017, 549(7671): 269-272.
[16]YU C, HOU L, ZHENG Y, et al. Evidence for complete nitrification in enrichment culture of tidal sediments and diversity analysis of clade a comammox Nitrospira in natural environments[J]. Applied Microbiological Biotechnology, 2018, 102: 9363-9377.
[17]WANG M, HUANG G, ZHAO Z, et al. Newly designed primer pair revealed dominant and diverse comammox amoA gene in full-scale wastewater treatment plants[J]. Bioresource Technology, 2018, 270: 580-587.
[18]BEMAN J M, FRANCIS C A. Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hyper-nutrified subtropical estuary: Bahía del Tóbari, Mexico[J]. Applied and Environmental Microbiology, 2006, 72(12): 7767-7777.
[19]PROSSER J I. Autotrophic nitrification in bacteria. Advances in microbial physiology[J]. Advances in Microbial Physiology,1990,30(1):125-181.
[20]DE BOER W, KOWALCHUK G A. Nitrification in acid soils: micro-organisms and mechanisms[J]. Soil Biology and Biochemistry, 2001, 33(7): 853-866.
[21]DAHLGREN R A. Soil acidification and nitrogen saturation from weathering of ammonium-bearing rock[J]. Nature, 1994, 368(1): 838-841.
[22]PALOMO A, PEDERSEN A G,FOWLER S J, et al. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira[J]. The ISME Journal, 2018, 12: 1779-1793.
[23]WANG J, WANG J L, RHODES G, et al. Adaptive responses of comammox Nitrospira and canonical ammonia oxidizers to long-term fertilizations: Implications for the relative contributions of different ammonia oxidizers to soil nitrogen cycling[J]. Science of the Total Environment, 2019, 668:224-233.
[24]林黎,崔军,陈学萍,等. 滩涂围垦和土地利用对土壤微生物群落的影响[J]. 生态学报, 2014, 34(4): 899-906.
[25]PJEVAC P, SCHAUBERGER C, POGHOSYAN L, et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment[J]. Frontiers in Microbiology, 2017, 8: 1508-1514.

相似文献/References:

[1]周炜,张岳芳,朱普平,等.种植制度对长江下游稻田温室气体排放的影响[J].江苏农业学报,2017,(02):340.[doi:doi:10.3969/j.issn.1000-4440.2017.02.016]
 ZHOU Wei,ZHANG Yue-fang,ZHU Pu-ping,et al.Effects of different cropping patterns on greenhouse gases emissions from rice fields in the lower reaches of Yangtze River[J].,2017,(03):340.[doi:doi:10.3969/j.issn.1000-4440.2017.02.016]
[2]张慧,马连杰,杭晓宁,等.不同轮作模式下稻田土壤细菌和真菌多样性变化[J].江苏农业学报,2018,(04):804.[doi:doi:10.3969/j.issn.1000-4440.2018.04.013]
 ZHANG Hui,MA Lian-jie,HANG Xiao-ning,et al.Changes of soil bacterial and fungal diversity in paddy soils under different rotation patterns[J].,2018,(03):804.[doi:doi:10.3969/j.issn.1000-4440.2018.04.013]
[3]徐广春,顾中言,徐德进,等.2012-2016年稻田农药科学减量试验分析[J].江苏农业学报,2018,(05):1005.[doi:doi:10.3969/j.issn.1000-4440.2018.05.006]
 XU Guang-chun,GU Zhong-yan,XU De-jin,et al.Analysis on the scientific pesticide reduction trial in paddy field during 2012-2016[J].,2018,(03):1005.[doi:doi:10.3969/j.issn.1000-4440.2018.05.006]
[4]涂保华,胡茜,张艺,等.基于不同类型秸秆制备的生物炭对稻田土壤温室气体排放的影响[J].江苏农业学报,2019,(06):1374.[doi:doi:10.3969/j.issn.1000-4440.2019.06.015]
 TU Bao-hua,HU Qian,ZHANG Yi,et al.Effects of biochar based on different types of straw on greenhouse gas emission from paddy soil[J].,2019,(03):1374.[doi:doi:10.3969/j.issn.1000-4440.2019.06.015]
[5]胡中泽,衣政伟,王安,等.紫云英不同时期还田部分替代化肥对氨挥发及水稻产量的影响[J].江苏农业学报,2021,(05):1160.[doi:doi:10.3969/j.issn.1000-4440.2021.05.010]
 HU Zhong-ze,YI Zheng-wei,WANG An,et al.Effects of different incorporation stages of Chinese milk vetch residue on ammonia volatilization loss and yield of rice[J].,2021,(03):1160.[doi:doi:10.3969/j.issn.1000-4440.2021.05.010]
[6]纪洪亭,周炜,郭智,等.猪粪有机肥替代化学氮肥对水稻农学效应、安全效应及经济效益影响的综合评价[J].江苏农业学报,2021,(06):1451.[doi:doi:10.3969/j.issn.1000-4440.2021.05.012]
 JI Hong-ting,ZHOU Wei,GUO Zhi,et al.Comprehensive evaluation for the influence of substituting fertilizer by pig manure on agronomic effect, safety effect and economic benefit of rice[J].,2021,(03):1451.[doi:doi:10.3969/j.issn.1000-4440.2021.05.012]

备注/Memo

备注/Memo:
收稿日期:2019-08-12基金项目:国家自然科学基金项目(41671247、41103039);江苏省自然科学基金项目(BK20171455) ;江苏省大学生创新创业训练计划项目(201810300094X、201710300018)作者简介:张洁(1994-), 女, 安徽庐江人, 硕士研究生, 主要从事地气交换方面的研究。(E-mail) 1044909837@qq.com通讯作者:张耀鸿,(E-mail)yhzhang@nuist.edu.cn
更新日期/Last Update: 2020-07-14