[1]唐俊,赵成萍,周新志,等.基于EVI-RBF的玉米长势监测及产量预测[J].江苏农业学报,2020,(03):577-583.[doi:doi:10.3969/j.issn.1000-4440.2020.03.007]
 TANG Jun,ZHAO Cheng-ping,ZHOU Xin-zhi,et al.Maize growth monitoring and yield prediction based on EVI-RBF[J].,2020,(03):577-583.[doi:doi:10.3969/j.issn.1000-4440.2020.03.007]
点击复制

基于EVI-RBF的玉米长势监测及产量预测()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年03期
页码:
577-583
栏目:
耕作栽培·资源环境
出版日期:
2020-06-30

文章信息/Info

Title:
Maize growth monitoring and yield prediction based on EVI-RBF
作者:
唐俊1赵成萍1周新志1李博2
(1.四川大学电子信息学院,四川成都610065;2.四川大学水利信息化联合实验室,四川成都610065)
Author(s):
TANG Jun1ZHAO Cheng-ping1ZHOU Xin-zhi1LI Bo2
(1.Electronic Information School, Sichuan University, Chengdu 610065, China;2.Joint Laboratory of Water Conservancy Informatization, Sichuan University, Chengdu 610065, China)
关键词:
MODIS09A1EVI-RBF玉米长势产量
Keywords:
MODIS09A1EVI-RBFmaizegrowthyield
分类号:
S127;S513
DOI:
doi:10.3969/j.issn.1000-4440.2020.03.007
文献标志码:
A
摘要:
近年来,农作物长势监测和产量预测研究大多是通过建立复杂的生长模型来实现的,而这往往不具有较强的推广性。本研究建立了一种基于植被指数和产量统计数据的玉米长势监测及产量预测方法。以玉米为研究对象,利用MODIS09A1数据建立其2000-2018年的增强型植被指数(EVI)时间序列,并将该序列作为径向基(RBF)神经网络的输入参数,下一阶段的EVI值或玉米产量作为网络的输出参数,完成玉米的长势监测及产量预测。该方法被成功应用到黑龙江省哈尔滨市宾县的玉米研究中,对玉米EVI值的预测精度达到了90.0%以上,产量预测相较于传统的线性回归模型也有明显提高,预测精度达到了98.6%。依赖植被指数和产量统计数据的长势监测及产量预测方法有较大的应用推广前景。
Abstract:
In recent years, the research of maize growth monitoring and yield prediction is mostly achieved by building complex growth models, but these methods are not easy to be popularized. To overcome the problem, a method of maize growth monitoring and yield prediction was established based on vegetation index and statistical yield data. Taking maize as the research object, the enhanced vegetation index(EVI) time sequence from 2000 to 2018 of the maize was established by using MODIS09A1 data. Moreover, this time sequence was taken as the input parameter of radial basis function (RBF) neural network, and the values of EVI or maize yield in the next stage were taken as the output parameters. This method has been successfully applied to the research on maize in Binxian County, Harbin City, Heilongjiang province, with the prediction accuracy of over 90% for the value of EVI. Compared with the results based on conventional linear regression forecasting method, the prediction accuracy of yield based on the proposed method in this study was significantly improved. In conclusion, the method of growth monitoring and yield prediction based on vegetation index and statistical yield data has a great application prospect.

参考文献/References:

[1]KHANAL S, FULTON J, SHEARER S. An overview of current and potential applications of thermal remote sensing in precision agriculture[J]. Computers and Electronics in Agriculture, 2017, 139: 22-32.
[2]BOLTON, DOUGLAS K F, MARK A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics[J]. Agricultural and Forest Meteorology, 2013, 173: 74-84.
[3]DE L, OVANDO G, BRESSANINI L, et al. Soybean crop coverage estimation from NDVI images with different spatial resolution to evaluate yield variability in a plot[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146: 531-547.
[4]YU B, SHANG S. Multi-year mapping of major crop yields in an irrigation district from high spatial and temporal resolution vegetation index[J]. Sensors, 2018, 18(11): 3787.
[5]DUCHEMIN B, MAISONGRANDE P, BOULET G, et al. A simple algorithm for yield estimates: evaluation for semi-arid irrigated winter wheat monitored with green leaf area index[J]. Environmental Modelling & Software, 2008, 23(7): 876-892.
[6]SON N T, CHEN C F, CHEN C R, et al. A comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation[J]. Agricultural and Forest Meteorology, 2014, 197: 52-64.
[7]KOUADIO L, NEWLANDS N K, DAVIDSON A, et al. Assessing the performance of MODIS NDVI and EVI for seasonal crop yield forecasting at the ecodistrict scale[J]. Remote Sensing, 2014, 6(10): 10193-10214.
[8]CHENG T, YANG Z, LNOUE Y, et al. Preface: recent advances in remote sensing for crop growth monitoring[J]. Remote Sensing, 2016, 8: 116.
[9]MENG J H. Research to crop growth monitoring indicators with remote sensing[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2006.
[10]HANK T B, BACH H, MAUSER W. Using a remote sensing-supported hydro-agroecological model for field-scale simulation of heterogeneous crop growth and yield: application for wheat in central Europe[J]. Remote Sensing, 2015, 7(4): 3934-3965.
[11]SEO B, LEE J, LEE K D, et al. Improving remotely-sensed crop monitoring by NDVI-based crop phenology estimators for corn and soybeans in Iowa and Illinois, USA[J]. Field Crops Research, 2019, 238: 113-128.
[12]AKULA B, SHEKH A M. Field calibration and evaluation of crop simulation model, InfoCrop to estimate wheat yields[J]. Journal of Agrometeorology, 2005, 7(2): 199-207.
[13]SUNEJA P, DAS D K, KALRA N. Spectral differentiation of wheat, mustard and chickpea crops grown under variable water supply situations[J]. Climate Change and Environmental Sustainability, 2014, 2(1): 62-66.
[14]KRISHNAN P, SHARMA R K, DASS A, et al. Web-based crop model: Web InfoCrop-Wheat to simulate the growth and yield of wheat[J]. Computers and Electronics in Agriculture, 2016, 127: 324-335.
[15]SAXANA R, BHARADWAJ V, KALRA N. Simulation of wheat yield using WTGROWS in northern India[J]. Journal Agrometeorology, 2006, 8(1): 87-90.
[16]SINGH P K, SINGH K K, BAXLA A K, et al. Impact of climatic variability on wheat yield predication using DSSAT v 4.5 (CERES-wheat) model for the different agroclimatic zones in India[J]. Climate Change Modelling, Planning and Policy for Agriculture, 2015, 6: 45-55.
[17]PARIDA B R, RANJAN A K. Wheat acreage mapping and yield prediction using Landsat-8 OLI satellite data: a case study in Sahibganj province, Jharkhand (India)[J]. Remote Sensing in Earth Systems Sciences, 2019, 2: 96-107.
[18]GUO C, TANG Y, LU J, et al. Predicting wheat productivity: integrating time series of vegetation indices into crop modeling via sequential assimilation[J]. Agricultural and Forest Meteorology, 2019, 272: 69-80.
[19]PEDE T, MOUNTRAKIS G, SHAW S B. Improving corn yield prediction across the US corn belt by replacing air temperature with daily MODIS land surface temperature[J]. Agricultural and Forest Meteorology, 2019, 276: 107615.
[20]JHA P K, ATHANASIADIS P, GUALDI S, et al. Using daily data from seasonal forecasts in dynamic crop models for yield prediction: a case study for rice in Nepal’s Terai[J]. Agricultural and Forest Meteorology, 2019, 265: 349-358.
[21]NEVAVUORI P, NARRA N, LIPPING T. Crop yield prediction with deep convolutional neural networks[J]. Computers and Electronics in Agriculture, 2019, 163: 104859.
[22]NIEDBALA G. Application of artificial neural networks for multi-criteria yield prediction of winter rapeseed[J]. Sustainability, 2019, 11(2): 533.
[23]LI Y, GUAN K, YU A, et al. Toward building a transparent statistical model for improving crop yield prediction: modeling rainfed corn in the US[J]. Field Crops Research, 2019, 234: 55-65.
[24]SKAKUN S, VERMOTE E, FRANCH B, et al. Winter wheat yield assessment from Landsat 8 and Sentinel-2 data: incorporating surface reflectance, through phenological fitting, into regression yield models[J]. Remote Sensing, 2019, 11(15): 1768.
[25]胡琼. 基于时序MODIS影像的农作物遥感识别方法研究[D]. 北京:中国农业科学院,2018.
[26]吴炳方,张峰,刘成林,等. 农作物长势综合遥感监测方法[J]. 遥感学报,2004,8(6):498-514.
[27]于堃,王志明,孙玲,等. MODIS时序数据在县级尺度作物长势监测分析中的应用[J]. 江苏农业学报,2013,29(6): 1278-1290.
[28]王珏,周健勇. 基于RBF神经网络对宁波地铁粉丝量的预测及广告运营模式研究[J]. 交通运输,2019,5(1):27-32.
[29]朱洁. 一种新的曲线相似性判别方法研究[D]. 武汉:武汉理工大学,2008.

备注/Memo

备注/Memo:
收稿日期:2020-01-03基金项目:国家自然科学基金项目(U1933123)作者简介:唐俊(1996-),男,四川德阳人,硕士研究生,主要从事模式识别与智能系统研究。(E-mail)815095332@qq.com通讯作者:赵成萍,(E-mail)sc_zcp@scu.edu.cn
更新日期/Last Update: 2020-07-14