参考文献/References:
[1]KHANAL S, FULTON J, SHEARER S. An overview of current and potential applications of thermal remote sensing in precision agriculture[J]. Computers and Electronics in Agriculture, 2017, 139: 22-32.
[2]BOLTON, DOUGLAS K F, MARK A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics[J]. Agricultural and Forest Meteorology, 2013, 173: 74-84.
[3]DE L, OVANDO G, BRESSANINI L, et al. Soybean crop coverage estimation from NDVI images with different spatial resolution to evaluate yield variability in a plot[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146: 531-547.
[4]YU B, SHANG S. Multi-year mapping of major crop yields in an irrigation district from high spatial and temporal resolution vegetation index[J]. Sensors, 2018, 18(11): 3787.
[5]DUCHEMIN B, MAISONGRANDE P, BOULET G, et al. A simple algorithm for yield estimates: evaluation for semi-arid irrigated winter wheat monitored with green leaf area index[J]. Environmental Modelling & Software, 2008, 23(7): 876-892.
[6]SON N T, CHEN C F, CHEN C R, et al. A comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation[J]. Agricultural and Forest Meteorology, 2014, 197: 52-64.
[7]KOUADIO L, NEWLANDS N K, DAVIDSON A, et al. Assessing the performance of MODIS NDVI and EVI for seasonal crop yield forecasting at the ecodistrict scale[J]. Remote Sensing, 2014, 6(10): 10193-10214.
[8]CHENG T, YANG Z, LNOUE Y, et al. Preface: recent advances in remote sensing for crop growth monitoring[J]. Remote Sensing, 2016, 8: 116.
[9]MENG J H. Research to crop growth monitoring indicators with remote sensing[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2006.
[10]HANK T B, BACH H, MAUSER W. Using a remote sensing-supported hydro-agroecological model for field-scale simulation of heterogeneous crop growth and yield: application for wheat in central Europe[J]. Remote Sensing, 2015, 7(4): 3934-3965.
[11]SEO B, LEE J, LEE K D, et al. Improving remotely-sensed crop monitoring by NDVI-based crop phenology estimators for corn and soybeans in Iowa and Illinois, USA[J]. Field Crops Research, 2019, 238: 113-128.
[12]AKULA B, SHEKH A M. Field calibration and evaluation of crop simulation model, InfoCrop to estimate wheat yields[J]. Journal of Agrometeorology, 2005, 7(2): 199-207.
[13]SUNEJA P, DAS D K, KALRA N. Spectral differentiation of wheat, mustard and chickpea crops grown under variable water supply situations[J]. Climate Change and Environmental Sustainability, 2014, 2(1): 62-66.
[14]KRISHNAN P, SHARMA R K, DASS A, et al. Web-based crop model: Web InfoCrop-Wheat to simulate the growth and yield of wheat[J]. Computers and Electronics in Agriculture, 2016, 127: 324-335.
[15]SAXANA R, BHARADWAJ V, KALRA N. Simulation of wheat yield using WTGROWS in northern India[J]. Journal Agrometeorology, 2006, 8(1): 87-90.
[16]SINGH P K, SINGH K K, BAXLA A K, et al. Impact of climatic variability on wheat yield predication using DSSAT v 4.5 (CERES-wheat) model for the different agroclimatic zones in India[J]. Climate Change Modelling, Planning and Policy for Agriculture, 2015, 6: 45-55.
[17]PARIDA B R, RANJAN A K. Wheat acreage mapping and yield prediction using Landsat-8 OLI satellite data: a case study in Sahibganj province, Jharkhand (India)[J]. Remote Sensing in Earth Systems Sciences, 2019, 2: 96-107.
[18]GUO C, TANG Y, LU J, et al. Predicting wheat productivity: integrating time series of vegetation indices into crop modeling via sequential assimilation[J]. Agricultural and Forest Meteorology, 2019, 272: 69-80.
[19]PEDE T, MOUNTRAKIS G, SHAW S B. Improving corn yield prediction across the US corn belt by replacing air temperature with daily MODIS land surface temperature[J]. Agricultural and Forest Meteorology, 2019, 276: 107615.
[20]JHA P K, ATHANASIADIS P, GUALDI S, et al. Using daily data from seasonal forecasts in dynamic crop models for yield prediction: a case study for rice in Nepal’s Terai[J]. Agricultural and Forest Meteorology, 2019, 265: 349-358.
[21]NEVAVUORI P, NARRA N, LIPPING T. Crop yield prediction with deep convolutional neural networks[J]. Computers and Electronics in Agriculture, 2019, 163: 104859.
[22]NIEDBALA G. Application of artificial neural networks for multi-criteria yield prediction of winter rapeseed[J]. Sustainability, 2019, 11(2): 533.
[23]LI Y, GUAN K, YU A, et al. Toward building a transparent statistical model for improving crop yield prediction: modeling rainfed corn in the US[J]. Field Crops Research, 2019, 234: 55-65.
[24]SKAKUN S, VERMOTE E, FRANCH B, et al. Winter wheat yield assessment from Landsat 8 and Sentinel-2 data: incorporating surface reflectance, through phenological fitting, into regression yield models[J]. Remote Sensing, 2019, 11(15): 1768.
[25]胡琼. 基于时序MODIS影像的农作物遥感识别方法研究[D]. 北京:中国农业科学院,2018.
[26]吴炳方,张峰,刘成林,等. 农作物长势综合遥感监测方法[J]. 遥感学报,2004,8(6):498-514.
[27]于堃,王志明,孙玲,等. MODIS时序数据在县级尺度作物长势监测分析中的应用[J]. 江苏农业学报,2013,29(6): 1278-1290.
[28]王珏,周健勇. 基于RBF神经网络对宁波地铁粉丝量的预测及广告运营模式研究[J]. 交通运输,2019,5(1):27-32.
[29]朱洁. 一种新的曲线相似性判别方法研究[D]. 武汉:武汉理工大学,2008.