[1]李晓振,徐岩,吴作宏,等.基于注意力神经网络的番茄叶部病害识别系统[J].江苏农业学报,2020,(03):561-568.[doi:doi:10.3969/j.issn.1000-4440.2020.03.005]
 LI Xiao-zhen,XU Yan,WU Zuo-hong,et al.Recognition system of tomato leaf disease based on attentional neural network[J].,2020,(03):561-568.[doi:doi:10.3969/j.issn.1000-4440.2020.03.005]
点击复制

基于注意力神经网络的番茄叶部病害识别系统()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年03期
页码:
561-568
栏目:
植物保护
出版日期:
2020-06-30

文章信息/Info

Title:
Recognition system of tomato leaf disease based on attentional neural network
作者:
李晓振徐岩吴作宏高照刘林
(山东科技大学电子信息工程学院,山东青岛266590)
Author(s):
LI Xiao-zhenXU YanWU Zuo-hongGAO ZhaoLIU Lin
(School of Electronic Information Engineering, Shandong University of Science & Technology, Qingdao 266590, China)
关键词:
番茄叶部病害注意力机制并行池化WEB界面
Keywords:
tomatoleaf diseaseattention mechanismparallel poolingWEB interface
分类号:
TP391
DOI:
doi:10.3969/j.issn.1000-4440.2020.03.005
文献标志码:
A
摘要:
基于注意力机制的卷积神经网络构建了番茄叶部病害识别系统。依据注意力机制构建并行注意力模块以提升特征提取能力,并与残差结构相结合构建PARNet模型。以分别患有早疫病、晚疫病、叶霉病、斑枯病和花叶病毒病这5类病害的叶片和健康叶片的叶部图像为研究对象,将PARNet模型与VGG16、ResNet50、SeNet等模型相对比,结果显示PARNet模型的识别率为96.91%,高出其他模型2.25%~11.58%。各类预测结果的精确率平均为96.84%。最后使用Flask完成WEB应用程序的开发,实现了跨平台的番茄叶部病害识别。
Abstract:
The convolutional neural network based on attention mechanism was proposed to construct tomato leaf disease recognition system. According to the attention mechanism, a parallel attention module was constructed to improve the feature extraction ability, and combined with the residual structure to construct a PARNet model. The images of healthy leaves and leaves suffering from early blight, late blight, leaf mold, leaf blight and mosaic virus were used as research objects. Compared with other models such as VGG16, ResNet50 and SeNet the recognition rate of the PARNet model was increased by 2.25%-11.58%. The accuracy rate of various prediction results was 96.84% on average. Flask was used to complete the development of WEB application program, and the cross-platform tomato leaf disease recognition was realized.

参考文献/References:

[1]刘子记,杜公福,牛玉,等.番茄主要病害的发生与防治技术[J].长江蔬菜,2019(19):59-62.
[2]KEERTHI S S, SHECADE S K. SMO algorithm for least-squares SVM formulations[J]. Neural Computation, 2014, 15(2):487-507.
[3]许伟栋,赵忠盖. 基于卷积神经网络和支持向量机算法的马铃薯表面缺陷检测[J].江苏农业学报,2018,34(6):1378-1385.
[4]徐岩,米强,刘斌,等. 基于字典学习的煤与矸石图像特征识别方法[J].山东科技大学学报(自然科学版),2018,37(3):66-72.
[5]LECUN Y, BENGIO Y, HINTON G. Deep learning [J].Nature, 2015, 521(7553):436-444.
[6]SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014, 14(9):1409-1556.
[7]SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]// IEEE.2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE, 2015:1-9.
[8]HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE, 2016:770-778.
[9]LETARTE G, PARADIS F, GIGUERE P, et al. Import- ance of self-attention for sentiment analysis[C]// ACL. Proceed- ings of the 2018 EMNLP Workshop BlackboxNLP: Ana- lyzing and Interpreting Neural Networks for NLP. Brus- sels: Association for Computational Linguistics. Brussels: ACL,2018: 267-275.
[10]FU J, ZHENG H, MEI T. Look closer to see better: Recurrent attention convolutional neural network for fine- grained image recognition[C]//IEEE. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 4476-4484.
[11]HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// IEEE.The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE,2018:7132-7141.
[12]MOHANTY S P, HUGHES D P, SALATHE M. Using deep learning for image-based plant disease detection[J]. Frontiers in Plant Science, 2016, 7:1419.
[13]RUDER S. An overview of gradient descent optimization algorithms[DB/OL]. (2016-09-15)
[2017-6-15]. https://arxiv.org/abs/1609.04747.
[14]刘嘉政. 基于深度迁移学习模型的花卉种类识别[J].江苏农业科学,2019,47(20):231-236.
[15]庄福振. 迁移学习研究进展[J]. 软件学报, 2015, 26(1):26-39.
[16]LONG J, SHELHAMER E, DARRELL T. Fully Convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 39(4):640-651.
[17]王秀美,牟少敏,邹宗峰,等. 基于深度学习的小麦蚜虫预测预警[J].江苏农业科学,2018,46(5):183-187.
[18]HONG-WEI N, DUNG N, VASSILIOS V, et al. Deep learning for emotion recognition on small datasets using transfer learning[C]// ACM.Proceedings of the 2015 ACM on International Conference on Multimodal Interaction. Seattle: ACM,2015:443-449.
[19]SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]// IEEE.2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE,2016:2818-2826.

相似文献/References:

[1]赵丽萍,李永灿,赵统敏,等.灰霉菌毒素诱导番茄抗性突变体及相关防御酶活性[J].江苏农业学报,2016,(03):631.[doi:10.3969/j.issn.1000-4440.2016.03.023]
 ZHAO Li-ping,LI Yong-can,ZHAO Tong-min,et al.Resistant mutant induced by toxin of Botrytis cinerea in tomato and the activities of related defensive enzymes[J].,2016,(03):631.[doi:10.3969/j.issn.1000-4440.2016.03.023]
[2]李亚茹,王银磊,赵丽萍,等.番茄ty-5和 Mi-1基因多重 PCR 体系的建立[J].江苏农业学报,2016,(04):869.[doi:10.3969/j.issn.100-4440.2016.04.024]
 LI Ya-ru,WANG Yin-lei,ZHAO Li-ping,et al.Identification of ty-5 gene and Mi-1 gene by multiplex PCR in tomato[J].,2016,(03):869.[doi:10.3969/j.issn.100-4440.2016.04.024]
[3]吕敏,苏建坤,白和盛,等.桃蚜取食和机械损伤对番茄和辣椒 PAL、LOX 和 PPO 活性的诱导作用[J].江苏农业学报,2016,(06):1273.[doi:doi:10.3969/j.issn.1000-4440.2016.06.013]
 Lv?Min,SU Jian-kun,BAI He-sheng,et al.The activities of PAL, LOX and PPO in tomato and pepper plants induced by aphid herbivory and mechanical damage[J].,2016,(03):1273.[doi:doi:10.3969/j.issn.1000-4440.2016.06.013]
[4]姜静,王银磊,赵丽萍,等.番茄qRT-PCR内参基因的筛选[J].江苏农业学报,2017,(02):389.[doi:doi:10.3969/j.issn.1000-4440.2017.02.024]
 JIANG Jing,WANG Yin-lei,ZHAO Li-ping,et al.Selection of tomato reference genes for qRT-PCR[J].,2017,(03):389.[doi:doi:10.3969/j.issn.1000-4440.2017.02.024]
[5]罗伟君,唐琳,周佳丽,等.纳米锌肥对番茄果实锌含量与品质的强化[J].江苏农业学报,2016,(01):184.[doi:10.3969/j.issn.1000-4440.2016.01.028 ]
 LUO Wei-jun,TANG Lin,ZHOU Jia-li,et al.Improvement of zinc concentration and quality of tomato fruit by nano zinc fertilizer[J].,2016,(03):184.[doi:10.3969/j.issn.1000-4440.2016.01.028 ]
[6]乔俊卿,陈志谊,梁雪杰,等.枯草芽孢杆菌Bs916在番茄根部的定殖[J].江苏农业学报,2015,(06):1278.[doi:doi:10.3969/j.issn.1000-4440.2015.06.013]
 QIAO Jun-qing,CHEN Zhi-yi,LIANG Xue-jie,et al.Colonization of Bacillus subtilis Bs916 on tomato root[J].,2015,(03):1278.[doi:doi:10.3969/j.issn.1000-4440.2015.06.013]
[7]翟亚明,魏丽萍,杨倩.不同调控方式对设施盐渍化土壤特性和番茄产量及品质的影响[J].江苏农业学报,2015,(04):871.[doi:10.3969/j.issn.1000-4440.2015.04.025]
 ZHAI Ya-ming,WEI Li-ping,YANG Qian.Effects of regulatory measures on characters of greenhouse saline soil and tomato yield and quality[J].,2015,(03):871.[doi:10.3969/j.issn.1000-4440.2015.04.025]
[8]杨玛丽,赵统敏,余文贵,等.转基因 RNAi 技术在番茄研究中的应用[J].江苏农业学报,2015,(01):217.[doi:10.3969/j.issn.1000-4440.2015.01.034]
 YANG Ma-li,ZHAO Tong-min,YU Wen-gui,et al.Progress in RNA interference technique applied in tomato[J].,2015,(03):217.[doi:10.3969/j.issn.1000-4440.2015.01.034]
[9]唐玉新,曲萍,陆岱鹏,等.适合机械化移栽的番茄穴盘育苗基质配方筛选[J].江苏农业学报,2017,(06):1342.[doi:doi:10.3969/j.issn.1000-4440.2017.06.021]
 TANG Yu-xin,QU Ping,LU Dai-peng,et al.Screening of tomato plug seedling substrates proportion suitable for mechanized transplanting[J].,2017,(03):1342.[doi:doi:10.3969/j.issn.1000-4440.2017.06.021]
[10]姜静,王银磊,李亚茹,等.江苏省及其他地区番茄黄化曲叶病毒的分子鉴定及序列分析[J].江苏农业学报,2018,(01):238.[doi:doi:10.3969/j.issn.1000-4440.2018.01.035]
 JIANG Jing,WANG Yin-lei,LI Ya-ru,et al.Molecular identification and sequence analysis of tomato yellow leaf curl virus in Jiangsu province and its peripheral area[J].,2018,(03):238.[doi:doi:10.3969/j.issn.1000-4440.2018.01.035]

备注/Memo

备注/Memo:
收稿日期:2020-03-23基金项目:国家自然科学基金项目(11547037、11604181);山东省研究生教育创新计划项目(01040105305);海信(山东)冰箱有限公司研发中心资助课题作者简介:李晓振(1994-),男,山东临沂人,硕士研究生,研究方向为计算机视觉、深度学习和人工智能等。(E-mail)lxz201019@126.com通讯作者:徐岩,(E-mail)xuyan@sdust.edu.cn
更新日期/Last Update: 2020-07-14