[1]苗梦珂,王宝山,李长春,等.基于连续小波变换的冬小麦叶片最大净光合速率遥感估算[J].江苏农业学报,2020,(03):544-552.[doi:doi:10.3969/j.issn.1000-4440.2020.03.003]
 MIAO Meng-ke,WANG Bao-shan,LI Chang-chun,et al.Remote sensing estimation of maximum net photosynthetic rate of winter wheat leaves based on continuous wavelet transform[J].,2020,(03):544-552.[doi:doi:10.3969/j.issn.1000-4440.2020.03.003]
点击复制

基于连续小波变换的冬小麦叶片最大净光合速率遥感估算()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年03期
页码:
544-552
栏目:
遗传育种·生理生化
出版日期:
2020-06-30

文章信息/Info

Title:
Remote sensing estimation of maximum net photosynthetic rate of winter wheat leaves based on continuous wavelet transform
作者:
苗梦珂1234王宝山1李长春1龙慧灵234杨贵军234冯海宽234翟丽婷234刘明星234吴智超234
(1.河南理工大学,河南焦作454000;2.农业部农业遥感机理与定量遥感重点实验室/北京农业信息技术研究中心,北京100097;3.国家农业信息化工程技术研究中心,北京100097;4.北京市农业物联网工程技术研究中心,北京100097)
Author(s):
MIAO Meng-ke1234WANG Bao-shan1LI Chang-chun1LONG Hui-ling234YANG Gui-jun234FENG Hai-kuan234ZHAI Li-ting234LIU Ming-xing234WU Zhi-chao234
(1.Henan Polytechnic University, Jiaozuo 454000, China;2.Key Laboratory of Quantitative Remote Sensing in Agriculture, Ministry of Agriculture/ Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China;3.National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China;4.Beijing Engineering Research Center for Agriculture Internet of Things, Beijing 100097, China)
关键词:
连续小波变换最大净光合速率植被指数高光谱
Keywords:
continuous wavelet transformmaximum net photosynthetic ratevegetation indexhyper-spectrum
分类号:
S512
DOI:
doi:10.3969/j.issn.1000-4440.2020.03.003
文献标志码:
A
摘要:
已有研究发现,植物的最大净光合速率(Amax)决定了其潜在的光合能力。以冬小麦为研究对象,以2017年、2018年4-6月获取的拔节期、挑旗期、开花期和灌浆期4个重要生育期的不同叶位叶片的原始光谱(350~1 350 nm)与气体交换数据为基础,旨在建立基于连续小波变换的冬小麦叶片最大净光合速率估算模型。结果表明,基于连续小波变换方法估算的模型,2017年、2018年的建模决定系数(R2)分别为0.62、0.77,验证R2分别为0.65、0.77,其估算模型的精度远高于基于植被指数建立的模型。通过对比分析几种植被指数与高光谱数据对最大净光合速率的估算结果发现,植被指数对小麦叶片Amax的解释能力较低,无法对光合能力作出正确且精确的估算。基于连续小波变换方法对冬小麦叶片Amax的估算精度较高,可以作为预估冬小麦生长状况、产量的依据。
Abstract:
Present studies have shown that the maximum net photosynthetic rate (Amax) of a plant determines its potential capacity in photosynthesis. Winter wheat was taken as the research object, the data of original spectra (350-1 350 nm) and gas exchange in different leaf positions in four important growth periods such as elongation stage, flagging stage, flowering stage and filling stage were obtained from April to June in 2017 and 2018. The estimation model for Amax of winter wheat leaves was established based on continuous wavelet transform. The results showed that determination coefficients (R2) of the model established by continuous wavelet transform in 2017 and 2018 were 0.62 and 0.77 respectively, while the determination coefficients in the verification were 0.65 and 0.77 respectively. The accuracy of the estimation model based on continuous wavelet transform was much higher than that based on the vegetation index. By comparing and analyzing several Amax results estimated by vegetation indices and hyperspectral data, it was found that the vegetation index showed a low ability in explaining Amax, and it couldn’t make a correct and accurate estimation of photosynthetic capacity. The method based on continuous wavelet transform is more accurate in the estimation of Amax, which can be used as the basis for predicting the growth status and yield of winter wheat.

参考文献/References:

[1]李合生. 现代植物生理学[M]. 北京:高等教育出版社, 2002:129-137.
[2]梁振娟,马浪浪,陈玉章,等. 马铃薯叶片光合特性研究进展[J]. 农业科技通讯, 2015(3):41-45.
[3]贾小丽,苗利国,林红梅,等. 不同环境下水稻灌浆期净光合速率的动态遗传研究[J]. 中国农学通报, 2012, 28(18):31-35.
[4]张治安,杨福,陈展宇, 等. 叶片净光合速率日变化及其与环境因子的相互关系[J]. 中国农业科学, 2006, 39(3):502-509.
[5]林琼影,胡剑,温国胜, 等. 天目山毛竹叶冬季光合作用日变化规律[J].福建林学院学报, 2008, 28(1):61-64.
[6]王朝英,李昌晓,张晔. 水淹对枫树幼苗光合生理特征的影响[J]. 应用生态学报, 2013, 24(3):675-682.
[7]BLACKBURN G A,FERWERDA J G. Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis[J]. Remote Sensing of Environment,2008,112(4):1614-1632.
[8]张竟成,刘鹏,王斌, 等.基于连续小波分析的植物理化参数反演中光谱分辨率影响分析[J]. 红外与毫米波学报, 2018,37(6):753-760.
[9]ZHANG J C, YUAN L, PU R L, et al. Comparison between wavelet spectral features and conventional spectral features in detecting yellow rust for winter wheat[J]. Computers and Electronics in Agriculture, 2014, 100: 79-87.
[10]吕玮,李玉环,毛伟兵, 等. 基于高光谱的小麦旗叶净光合速率的遥感反演模型的比较研究[J]. 农业资源与环境学报, 2017, 34(6):582-586.
[11]刘广银. 水稻不同基本苗群体经济产量直接形成期叶片光合速率与物质积累初步研究[D]. 重庆:西南大学, 2011.
[12]孙少波,杜华强,李平衡,等. 基于小波变换的毛竹叶片净光合速率高光谱遥感反演[J]. 应用生态学报, 2016, 27(1):49-58.
[13]李春喜,韩蕊,邵云,等. 小麦开花期旗叶光合特性与地上部干物质量的相关和通径分析[J]. 江苏农业科学, 2019, 47(6):66-70.
[14]张卓,龙慧灵,王崇倡,等. 冬小麦叶片光合特征高光谱遥感估算模型的比较研究[J]. 中国农业科学, 2019, 52(4):61643-62855.
[15]FARQUHAR G D, VON CAEMMERER S V, BERRY J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149:, 78-90.
[16]刘金亨. 基于小波变换的遥感图像处理研究[D]. 重庆:重庆大学, 2010.
[17]CHENG T,RIVARD B,SNCHEZ-AZOFEIFA G A,et al. Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation[J]. Remote Sensing of Environment,2010,114(4):899-910.
[18]CHENG T,RIVARD B,SNCHEZ-AZOFEIFA A. Spectroscopic determination of leaf water content using continuous wavelet analysis [J]. Remote Sensing of Environment,2011,115(2): 659-670.
[19]唐启义. 数理统计在植保试验研究中的应用——第七讲多元线性回归分析[J]. 植保技术与推广, 2001,21(12): 40-42.
[20]郭凯,孙培新,刘卫国,等. 利用遥感影像软件ENVI提取植被指数[J]. 红外, 2005(5):13-15,26.
[21]田庆久,闵祥军.植被指数研究进展[J]. 地球科学进展,1998,13(4):327-333.
[22]汪小钦,王苗苗,王绍强,等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报, 2015, 31(5):152-159.
[23]ZHOU X, ZHENG H B, XU X Q, et al. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2017,130: 246-255.
[24]CHENG H D, JIANG X H, SUN Y, et al. Color image segmentation: advances and prospects[J]. Pattern Recognition, 2001, 34(12): 2259-2281.
[25]郭建茂,王星宇,李淑婷,等. 基于冠层光谱红边参数和植被指数的冬小麦水分胁迫监测[J]. 江苏农业科学,2019,47(10):88-94.
[26]边琳,叶飞,刘珊珊,等.基于NDVI的昆明市2001-2005年植被覆盖度变化趋势分析[J].山东农业科学,2018,50(1):107-110.
[27]孟令奎,李晓香,张文. 植被覆盖区VIIRS与MODIS遥感指数的相关性[J].江苏农业学报,2018,34(3):570-577.
[28]TUCKER C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979,8(2): 127-150.
[29]JORDAN C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4):663-666.
[30]HUETE A, JUSTICE C, LIU H. Development of vegetation and soil indexes for MODIS-EOS[J]. Remote Sensing of Environment, 1994, 49(3): 224-234 .
[31]BIRTH G S, MCVEY G R. Measuring the color of growing turf with a reflectance spectrophotometer[J]. Agronomy Journal, 1968, 60(6):640-643.
[32]GAMON J A, PEUELAS J, FIELD C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency[J]. Remote Sensing of Environment, 1992, 41(1):35-44.
[33]PENUELAS J, FILELLA I, GAMON J A. Assessment of photosynthetic radiation-use efficiency with spectral reflectance[J]. New Phytologist, 1995, 131(3): 291-296.
[34]刘匣,丁奠元,张浩杰,等. 覆膜条件下对AquaCrop模型冬小麦生长动态和土壤水分模拟效果的评价分析[J]. 中国农业科学,2017,50(10):1838-1851.
[35]王娣,佃袁勇,乐源,等. 基于高光谱植被指数的叶片净光合速率Pn反演[J]. 地理与地理信息科学, 2016, 32(4):42-48.

相似文献/References:

[1]江远东,李新国,杨涵.基于连续小波变换的表层土壤有机碳含量的高光谱估算[J].江苏农业学报,2023,(01):118.[doi:doi:10.3969/j.issn.1000-4440.2023.01.014]
 JIANG Yuan-dong,LI Xin-guo,YANG Han.Hyperspectral estimation of organic carbon content in surface soils based on continuous wavelet transform[J].,2023,(03):118.[doi:doi:10.3969/j.issn.1000-4440.2023.01.014]

备注/Memo

备注/Memo:
收稿日期:2019-12-05基金项目::国家重点研发计划项目(2018YFF0213602);国家自然科学基金项目(41301475、41601346);北京市农林科学院博士后基金项目;河南省科技攻关项目(1821021101186)作者简介:苗梦珂(1994-),女,河南永城人,硕士,研究实习员,主要从事生态遥感研究。(E-mail)Mengkemiao17@163.com通讯作者:龙慧灵,(E-mail)longhl@nercita.org.cn
更新日期/Last Update: 2020-07-14