[1]季钦杰,卢伟,宋爱国,等.水果尺寸在线测量的智能柔性手爪设计[J].江苏农业学报,2020,(02):455-462.[doi:doi:10.3969/j.issn.1000-4440.2020.02.028]
 JI Qin-jie,LU Wei,SONG Ai-guo,et al.Design of an intelligent soft gripper for on-line measurement of fruit size[J].,2020,(02):455-462.[doi:doi:10.3969/j.issn.1000-4440.2020.02.028]
点击复制

水果尺寸在线测量的智能柔性手爪设计()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年02期
页码:
455-462
栏目:
园艺
出版日期:
2020-04-30

文章信息/Info

Title:
Design of an intelligent soft gripper for on-line measurement of fruit size
作者:
季钦杰12卢伟12宋爱国3王鹏12丁宇12王玲12
(1. 南京农业大学工学院,江苏南京210031;2.江苏省现代设施农业技术与装备工程实验室,江苏南京210031;3.东南大学仪器科学与工程学院,江苏南京210096)
Author(s):
JI Qin-jie12LU Wei12SONG Ai-guo3WANG Peng12DING Yu12WANG Ling12
(1.College of Engineering, Nanjing Agricultural University, Nanjing 210031, China;2.Jiangsu Province Engineering Laboratory of Modern Facility Agriculture Technology and Equipment, Nanjing 210031, China;3.College of Instrumental Science and Engineering, Southeast University, Nanjing 210096, China)
关键词:
力触觉弯曲度柔性手爪原位测量柔性机器人
Keywords:
hapticcurvaturesoft gripperin-situ measurementsoft robot
分类号:
S225;TP241
DOI:
doi:10.3969/j.issn.1000-4440.2020.02.028
文献标志码:
A
摘要:
针对目前水果自动化分级中手爪普遍缺少抓取力和水果尺寸信息而感知能力不足的问题,设计一种具有抓取力和水果尺寸原位动态检测功能的柔性手爪。首先,设计一种基于单气道多腔体结构的智能柔性三指手爪,其中一根手指通过悬臂梁力传感器竖直安装于手掌上用于检测力触觉,一根手指内嵌柔性弯曲度传感器用于检测手指的弯曲度,另一根手指直接固装于手掌上;设计力觉传感器和弯曲度传感器调理电路,并分别进行标定。其次,提出基于力觉传感器和弯曲度传感器融合的水果尺寸原位测量方法,推导基于手指弯曲度的水果尺寸测量公式,并通过有限元分析和试验进行验证。有限元仿真结果表明,基于手指弯曲度的水果直径测量误差小于5%;通过分别对不同直径(15 mm、25 mm、35 mm、45 mm)的3D打印圆柱和水果(杏子、冬枣、红提和龙眼等)进行抓取试验,表明力觉信号第一次突变时刻(手指刚接触到圆柱时)的手指弯曲度可用于被抓物直径的精确测量,误差小于5%。基于柔性手爪的力觉传感器和弯曲度传感器信息融合进行水果尺寸的在线快速测量是可行的。
Abstract:
For improving the shortcomings of the existed gripper without grasping force and fruit size detection in fruit grading system, an intelligent soft gripper which could measure grasping force and fruit size on-line dynamically was developed. Firstly, an intelligent flexible three-finger gripper based on the multi-cavity structure and single airway in each finger was developed. One finger was vertically installed on the palm through a cantilever beam force sensor to detect the tactile sense, one finger was embedded with a flexible curvature sensor to detect the curvature of the finger, and the other finger was installed on the palm directly. Moreover, the conditioning circuits of force sensor and bending sensor were developed and calibrated, respectively. Secondly, an in-situ measurement method of fruit size based on the fusion of the force sensor and curvature sensor was proposed. In addition, the fruit size measurement formula based on finger curvature was derived and verified by the finite element analysis experiment and fruit picking experiment. The simulation results of finite element showed that the fruit diameter detection error based on finger curvature was less than 5%. The grasping experiments on 3D-printed cylinders (15 mm, 25 mm, 35 mm, 45 mm) and different fruits(apricot, jujube, grape and longan, etc.) indicated that the finger curvature at the moment of the first mutation of force signal (the fingers just touched the object) could be used to accurately measure the diameter of the object with an error of less than 5%. It’s feasible to quickly measure the fruit size online based on the fusion information of force sensor and bending sensor.

参考文献/References:

[1]徐丽明,张铁中. 果蔬果实收获机器人的研究现状及关键问题和对策[J].农业工程学报,2004,20(5):38-42.
[2]王丽丽,郭艳玲,王迪,等. 果蔬采摘机器人研究综述[J].林业机械与木工设备,2009,37(1):10-11,14.
[3]卢伟,宋爱国,蔡健荣,等. 柑橘采摘机器人结构设计及运动学算法[J].东南大学学报(自然科学版),2011,41(1):95-100.
[4]TANIGAKI K, FUJIURA T, AKASE A, et al. Cherry-harvesting robot[J]. Computers and Electronics in Agriculture, 2008, 63(1): 65-72.
[5]KONDO N, YATA K, IIDA M, et al. Development of an end-effector for a tomato cluster harvesting robot[J]. Engineering in Agriculture, Environment and Food, 2010, 3(1): 20-24.
[6]BAETEN J, DONNé K, BOEDRIJ S, et al. Autonomous fruit picking machine: A robotic apple harvester[C]//Alexander Zelmsky. Field and service robotics. Berlin: Springer, 2008: 531-539.
[7]张立彬,杨庆华,胥芳,等. 机器人多指灵巧手及其驱动系统研究的现状[J]. 农业工程学报,2004, 20(3):271-275.
[8]BROWN E, RODENBERG N, AMEND J, et al. Universal robotic gripper based on the jamming of granular material[J]. Proceedings of the National Academy of Sciences, 2010, 107(44): 18809-18814.
[9]TRIVEDI D, RAHN C D, KIER W M, et al. Soft robotics: Biological inspiration, state of the art, and future research[J]. Applied Bionics and Biomechanics, 2008, 5(3): 99-117.
[10]SAUNDERS F, GOLDEN E, WHITE R D, et al. Experimental verification of soft-robot gaits evolved using a lumped dynamic model[J]. Robotica, 2011, 29(6): 823-830.
[11]ILIEVSKI F, MAZZEO A D, SHEPHERD R F, et al. Soft robotics for chemists[J]. Angewandte Chemie International Edition, 2011, 50(8): 1890-1895.
[12]LUO M, AGHELI M, ONAL C D. Theoretical modeling and experimental analysis of a pressure-operated soft robotic snake[J]. Soft Robotics, 2014, 1(2): 136-146.
[13]DOLLAR A M, HOWE R D. The highly adaptive SDM hand: design and performance evaluation[J]. The International Journal of Robotics Research, 2010, 29(5): 585-597.
[14]DEIMEL R, BROCK O. A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. The International Journal of Robotics Research, 2016, 35(1/3): 161-185.
[15]SUZUMORI K, IIKURA S, TANAKA H. Applying a flexible microactuator to robotic mechanisms[J]. IEEE Control Systems Magazine, 1992, 12(1): 21-27.
[16]王志恒. 基于FPA的新型气动机器人多指灵巧手研究[D].杭州:浙江工业大学,2011.
[17]ROLF M, STEIL J J. Constant curvature continuum kinematics as fast approximate model for the Bionic Handling Assistant[C]//Institute of Electrical and Electronics Engineers. 2012 IEEE/RSJ international conference on intelligent robots and systems. New York: Institute of Electrical and Electronics Engineers, 2012: 3440-3446.
[18]POLYGERINOS P, LYNE S, WANG Z, et al. Towards a soft pneumatic glove for hand rehabilitation[C]//Institute of Electrical and Electronics Engineers. 2013 IEEE/RSJ international conference on intelligent robots and systems. New York: Institute of Electrical and Electronics Engineers, 2013: 1512-1517.
[19]HAO Y, GONG Z, XIE Z, et al. Universal soft pneumatic robotic gripper with variable effective length[C]//Institute of Electrical and Electronics Engineers. 2016 35th chinese control conference (CCC). New York: Institute of Electrical and Electronics Engineers, 2016: 6109-6114.
[20]MOSADEGH B, POLYGERINOS P, KEPLINGER C, et al. Pneumatic networks for soft robotics that actuate rapidly[J]. Advanced Functional Materials, 2014, 24(15): 2163-2170.
[21]GALLOWAY K C, BECKER K P, PHILLIPS B, et al. Soft robotic grippers for biological sampling on deep reefs[J]. Soft Robotics, 2016, 3(1): 23-33.
[22]GALLOWAY K C, POLYGERINOS P, WALSH C J, et al. Mechanically programmable bend radius for fiber-reinforced soft actuators[C]//Institute of Electrical and Electronics Engineers. 2013 16th international conference on advanced robotics (ICAR). New York: Institute of Electrical and Electronics Engineers, 2013: 1-6.
[23]DEIMEL R, BROCK O. A compliant hand based on a novel pneumatic actuator[C]//Institute of Electrical and Electronics Engineers. 2013 IEEE International Conference on Robotics and Automation. New York: Institute of Electrical and Electronics Engineers, 2013: 2047-2053.
[24]MUSCATO G, PRESTIFILIPPO M, ABBATE N, et al. A prototype of an orange picking robot: past history, the new robot and experimental results[J]. Industrial Robot: An International Journal, 2005, 32(2): 128-138.
[25]彭艳,刘勇敢,杨扬,等. 软体机械手爪在果蔬采摘中的应用研究进展[J].农业工程学报,2018,34(9):11-20.
[26]ZHU M, WANG Z, HIRAI S, et al. Design and fabrication of a soft-bodied gripper with integrated curvature sensors[C]//Institute of Electrical and Electronics Engineers. 2017 24th international conference on mechatronics and machine vision in practice (M2VIP). New York: Institute of Electrical and Electronics Engineers, 2017: 1-6.
[27]PARK Y L, CHEN B R, WOOD R J. Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors[J]. IEEE Sensors Journal, 2012, 12(8): 2711-2718.
[28]BILODEAU R A, WHITE E L, KRAMER R K. Monolithic fabrication of sensors and actuators in a soft robotic gripper[C]//Institute of Electrical and Electronics Engineers. 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). New York: Institute of Electrical and Electronics Engineers, 2015: 2324-2329.
[29]MORROW J, SHIN H S, PHILLIPS-GRAFFLIN C, et al. Improving soft pneumatic actuator fingers through integration of soft sensors, position and force control, and rigid fingernails[C]//Institute of Electrical and Electronics Engineers. 2016 IEEE international conference on robotics and automation (ICRA). New York: Institute of Electrical and Electronics Engineers, 2016: 5024-5031.
[30]ELGENEIDY K, NEUMANN G, PEARSON S, et al. Contact detection and size estimation using a modular soft gripper with embedded flex sensors[C]//Institute of Electrical and Electronics Engineers. 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS). New York: Institute of Electrical and Electronics Engineers, 2018: 498-503.
[31]SHIH B, DROTMAN D, CHRISTIANSON C, et al. Custom soft robotic gripper sensor skins for haptic object visualization[C]//Institute of Electrical and Electronics Engineers. 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS). New York: Institute of Electrical and Electronics Engineers, 2017: 494-501.
[32]PARK W, SEO S, BAE J. Development of a sensorized hybrid gripper to evaluate grasping quality[C]//Institute of Electrical and Electronics Engineers. 2019 2nd IEEE international conference on soft robotics (RoboSoft). New York: Institute of Electrical and Electronics Engineers, 2019: 149-154.
[33]LI Y, CHEN Y, LI Y. Pre-charged pneumatic soft gripper with closed-loop control[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1402-1408.
[34]OZEL S, KESKIN N A, KHEA D, et al. A precise embedded curvature sensor module for soft-bodied robots[J]. Sensors and Actuators A: Physical, 2015, 236: 349-356.
[35]YAP H K, NG H Y, YEOW C H. High-force soft printable pneumatics for soft robotic applications[J]. Soft Robotics, 2016, 3(3): 144-158.

备注/Memo

备注/Memo:
收稿日期:2019-08-26基金项目:国家自然科学基金项目(11604154);江苏省自然科学基金面上项目(BK20181315);江苏省农机三新工程项目(SZ120170036);Asia Hub南京农业大学-密歇根州立大学联合研究项目(2017-AH-11);扬州市重点研发计划项目(现代农业)(YZ2018038)作者简介:季钦杰(1998-),男,浙江台州人,本科,研究方向为机器人传感与控制技术。(E-mail)jiqinjie_njaurobot@163.com通讯作者:卢伟,(E-mail)njaurobot@njau.edu.cn
更新日期/Last Update: 2020-05-18