[1]余方伟,王神云,张伟,等.芸薹根肿菌蛋白磷酸酶组的鉴定及生物信息学分析[J].江苏农业学报,2020,(02):318-324.[doi:doi:10.3969/j.issn.1000-4440.2020.02.010]
 YU Fang-wei,WANG Shen-yun,ZHANG Wei,et al.Identification and bioinformatics analysis of protein-phosphatome in Plasmodiophora brassicae[J].,2020,(02):318-324.[doi:doi:10.3969/j.issn.1000-4440.2020.02.010]
点击复制

芸薹根肿菌蛋白磷酸酶组的鉴定及生物信息学分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年02期
页码:
318-324
栏目:
植物保护
出版日期:
2020-04-30

文章信息/Info

Title:
Identification and bioinformatics analysis of protein-phosphatome in Plasmodiophora brassicae
作者:
余方伟王神云张伟王红于利李建斌
(江苏省农业科学院蔬菜研究所/江苏省高效园艺作物遗传改良重点实验室,江苏南京210014)
Author(s):
YU Fang-weiWANG Shen-yunZHANG WeiWANG HongYU LiLI Jian-bin
(Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
根肿病芸薹根肿菌蛋白磷酸酶
Keywords:
clubrootPlasmodiophora brassicaeprotein phosphatase
分类号:
Q814
DOI:
doi:10.3969/j.issn.1000-4440.2020.02.010
文献标志码:
A
摘要:
由蛋白激酶和蛋白磷酸酶调控的蛋白质可逆磷酸化是一种重要的蛋白质翻译后修饰,它在信号转导、细胞周期、基因转录、代谢调控等过程中起到至关重要的作用。本研究以芸薹根肿菌e3菌株的基因组为试验数据来源,采用生物信息学方法对芸薹根肿菌全基因组蛋白磷酸酶进行了鉴定和表达分析。 基于隐马尔可夫模型(Hidden markov model,HMM)搜索与SMART分析相结合,本研究在芸薹根肿菌基因组中共鉴定出54个蛋白磷酸酶基因。编码的54个蛋白磷酸酶可以进一步被分成4类,包括10个磷酸化蛋白磷酸酶(PPP),21个金属离子依赖型蛋白磷酸酶(PPM),19个酪氨酸蛋白磷酸酶(PTP),4个基于天冬氨酸的蛋白磷酸酶(APP)。这54个蛋白磷酸酶的相对分子质量为10 780~125 140,等电点为4.43~10.45。通过信号肽和跨膜结构域分析发现在这54个蛋白磷酸酶中,PBRA_007461存在信号肽,PBRA_003636、PBRA_004449、PBRA_004464、PBRA_005270、 PBRA_006854和PBRA_007201存在跨膜结构域。转录组分析结果表明这54个蛋白磷酸酶基因在不同时期差异表达,值得一提的是在休眠孢子萌发期和休眠孢子成熟期,金属离子依赖型蛋白磷酸酶基因PBRA_001085的表达量最高,说明该磷酸酶在休眠孢子发育中起到重要作用。综上所述,本研究可为芸薹根肿菌蛋白磷酸酶功能研究和根肿病防治靶标选择提供理论基础。
Abstract:
Reversible phosphorylation of proteins, regulated by protein kinases and protein phosphatases is an important post-translational modification, which plays a vital role in signal transduction, cell cycle, gene transcription and metabolic regulation. In this study, bioinformatics tools were used to analyze the protein sequences from Plasmodiophora brassicae e3 strain, and the identified protein phosphatase genes were further subjected to expression profiling analysis. Based on the combination of hidden markov model (HMM) search and SMART analysis, a total of 54 protein phosphatase genes were identified in the genome of P. brassicae. These 54 protein phosphatases could be further classified into four categories, including 10 phosphoprotein phosphatases (PPP), 21 metal ion-dependent protein phosphatases (PPM), 19 protein tyrosine phosphatases (PTP), four aspartate-based protein phosphatases (APP). The molecular weights of these 54 protein phosphatases ranged from 10 780 to 125 140, and the isoelectric points ranged from 4.43 to 10.45. The results of signal peptide and transmembrane domain analysis revealed that among 54 candidate protein phosphatases, PBRA_007461 had a signal peptide, and there were transmembrane domains in PBRA_003636, PBRA_004449, PBRA_004464, PBRA_005270, PBRA_006854 and PBRA_007201. Transcriptome analysis results showed that these 54 protein phosphatases genes were differentially expressed at different stages. Notably, the expression of the metal ion-dependent protein phosphatase gene PBRA_001085 was highest during the resting spore germination and the spore maturation period, indicating that it played an important role in resting spore development. In conclusion, this study can provide a theoretical basis for the characterization of protein phosphatases and development of novel strategies against clubroot.

参考文献/References:

[1]DIXON G R. The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease [J]. Journal of Plant Growth Regulation, 2009, 28(3): 194-202.
[2]HWANG S F, STRELKOV S E, FENG J, et al. Plasmodiophora brassicae: a review of an emerging pathogen of the Canadian canola (Brassica napus) crop [J]. Molecular Plant Pathology, 2012, 13(2): 105-113.
[3]CHAI A L, XIE X W, SHI Y X, et al. Research status of clubroot (Plasmodiophora brassicae) on cruciferous crops in China [J]. Canadian Journal of Plant Pathology, 2014, 36(1): 142-153.
[4]DIEDERICHSEN E, FRAUEN M, LINDERS E G A, et al. Status and perspectives of clubroot resistance breeding in crucifer crops [J]. Journal of Plant Growth Regulation, 2009, 28(3): 265-281.
[5]KUGINUKI Y, YOSHIKAWA H, HIRAI M. Variation in virulence of Plasmodiophora brassicae in Japan tested with clubroot-resistant cultivars of Chinese cabbage (Brassica rapa L. ssp. pekinensis) [J]. European Journal of Plant Pathology, 1999, 105(4): 327-332.
[6]STRELKOV S E, HWANG S F, MANOLII V P, et al. Emergence of new virulence phenotypes of Plasmodiophora brassicae on canola (Brassica napus) in Alberta, Canada [J]. European Journal of Plant Pathology, 2016, 145(3): 517-529.
[7]JIANG J, FREDUA-AGYEMAN R, STRELKOV S E, et al. Suppression of canola (Brassica napus) resistance by virulent isolates of Plasmodiophora brassicae (clubroot) during primary infection [J]. Plant Disease, 2020,104(2): 430-437.
[8]SACCO F, PERFETTO L, CASTAGNOLI L, et al. The human phosphatase interactome: an intricate family portrait [J]. FEBS Letters, 2012, 586(17): 2732-2739.
[9]COHEN P. The regulation of protein function by multisite phosphorylation-a 25 year update [J]. Trends in Biochemical Sciences, 2000, 25(12): 596-601.
[10]ARDITO F, GIULIANI M, PERRONE D, et al. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy [J]. International Journal of Molecular Medicine, 2017, 40(2): 271-280.
[11]MOORHEAD G B G, DE WEVER V, TEMPLETON G, et al. Evolution of protein phosphatases in plants and animals [J]. Biochemical Journal, 2008, 417(2): 401-409.
[12]MANNING G, PLOWMAN G D, HUNTER T, et al. Evolution of protein kinase signaling from yeast to man [J]. Trends in Biochemical Sciences, 2002, 27(10): 514-520.
[13]OLSEN J V, BLAGOEV B, GNAD F, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks [J]. Cell, 2006, 127(3): 635-648.
[14]RAMPITSCH C, TINKER N A, SUBRAMANIAM R, et al. Phosphoproteome profile of Fusarium graminearum grown in vitro under nonlimiting conditions [J]. Proteomics, 2012, 12(7): 1002-1005.
[15]WILLGER S D, LIU Z, OLARTE R A, et al. Analysis of the Candida albicans phosphoproteome [J]. Eukaryotic Cell, 2015, 14(5): 474-485.
[16]REN S, YANG M, LI Y, et al. Global phosphoproteomic analysis reveals the involvement of phosphorylation in aflatoxins biosynthesis in the pathogenic fungus Aspergillus flavus [J]. Scientific Reports, 2016, 6: 34078.
[17]ALONSO A, PULIDO R. The extended human PTP ome: a growing tyrosine phosphatase family [J]. The FEBS Journal, 2016, 283(8): 1404-1429.
[18]SHI Y. Serine/threonine phosphatases: mechanism through structure [J]. Cell, 2009, 139(3): 468-484.
[19]SON S, OSMANI S A. Analysis of all protein phosphatase genes in Aspergillus nidulans identifies a new mitotic regulator, fcp1 [J]. Eukaryotic Cell, 2009, 8(4): 573-585.
[20]YU F, GU Q, YUN Y, et al. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum [J]. New Phytologist, 2014, 203(1): 219-232.
[21]YUN Y, LIU Z, YIN Y, et al. Functional analysis of the Fusarium graminearum phosphatome [J]. New Phytologist, 2015, 207(1): 119-134.
[22]FINN R D, CLEMENTS J, EDDY S R. HMMER web server: interactive sequence similarity searching [J]. Nucleic Acids Research, 2011, 39(S2): 29-37.
[23]PETERSEN T N, BRUNAK S, VON HEIJNE G, et al. SignalP 4.0: discriminating signal peptides from transmembrane regions [J]. Nature Methods, 2011, 8(10): 785-786.
[24]KROGH A, LARSSON B , VON HEIJNE G, et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes [J]. Journal of Molecular Biology, 2001, 305(3): 567-580.
[25]SCHWELM A, FOGELQVIST J, KNAUST A, et al. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases [J]. Scientific Reports, 2015, 5: 11153.
[26]TRAPNELL C, WILLIAMS B A, PERTEA G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation [J]. Nature Biotechnology, 2010, 28(5): 511-515.
[27]KERK D, TEMPLETON G, MOORHEAD G B G. Evolutionary radiation pattern of novel protein phosphatases revealed by analysis of protein data from the completely sequenced genomes of humans, green algae, and higher plants [J]. Plant Physiology, 2008, 146(2): 351-367.
[28]SINGH A, GIRI J, KAPOOR S, et al. Protein phosphatase complement in rice: genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development [J]. BMC Genomics, 2010, 11(1): 435.
[29]WEI K, PAN S. Maize protein phosphatase gene family: identification and molecular characterization [J]. BMC Genomics, 2014, 15(1): 773.
[30]PANDEY R, MOHMMED A, PIERROT C, et al. Genome wide in silico analysis of Plasmodium falciparum phosphatome [J]. BMC Genomics, 2014, 15(1): 1024.
[31]HAREL A, BERCOVICH S, YARDEN O. Calcineurin is required for sclerotial development and pathogenicity of Sclerotinia sclerotiorum in an oxalic acid-independent manner [J]. Molecular Plant-Microbe Interactions, 2006, 19(6): 682-693.
[32]GILBERT L A, RAVINDRAN S, TURETZKY J M, et al. Toxoplasma gondii targets a protein phosphatase 2C to the nuclei of infected host cells [J]. Eukaryotic Cell, 2007, 6(1): 73-83.
[33]CAMPBELL C O, SANTIAGO D N, GUIDA W C, et al. In silico characterization of an atypical MAPK phosphatase of Plasmodium falciparum as a suitable target for drug discovery [J]. Chemical Biology & Drug Design, 2014, 84(2): 158-168.
[34]CHEN T, BI K, ZHAO Y, et al. MAPKK inhibitor U0126 inhibits Plasmodiophora brassicae development [J]. Phytopathology, 2018, 108(6): 711-720.

备注/Memo

备注/Memo:
收稿日期:2019-12-11基金项目:江苏省自然科学基金项目(BK20170608);国家自然科学基金项目 (31701773);江苏省“333高层次人才培养工程”项目(BRA2018379);江苏省农业科技自主创新基金项目[CX(18)2006]作者简介:余方伟(1986-),男,浙江台州人,博士,副研究员,从事甘蓝类作物抗病育种研究。(E-mail)yfw@jaas.ac.cn通讯作者:李建斌,(E-mail)jbli@jaas.ac.cn
更新日期/Last Update: 2020-05-18