参考文献/References:
[1]EITZINGER J, ORLANDINI S, STEFANSKI R, et al. Climate change and agriculture: introductory editorial[J]. The Journal of Agricultural Science, 2010, 148(5): 499-500.
[2]BOKSZCZANIN K L, FRAGKOSTEFANAKIS S, BOSTAN H, et al. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance[J]. Frontiers in Plant Science, 2013, 4: 315.
[3]BOHNERT H J, GONG Q Q, LI P H, et al. Unraveling abiotic stress tolerance mechanisms-getting genomics going [J]. Current Opinion in Plant Biology, 2006, 9(2): 180-188.
[4]WANG W, VINOCUR B, SHOSEYOV O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response [J]. Trends in Plant Science, 2004, 9(5): 244-252.
[5]HEMANTARANJAN A, NISHANT BHANU A, SINGH M N, et al. Heat stress responses and thermotolerance [J]. Advances in Plants & Agriculture Research, 2014, 1(3): 1-10.
[6]LARKINDALE J, KNIGHT M R. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid [J]. Plant Physiology, 2002, 128(2): 682-695.
[7]SUZUKI N, MITTLER R. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction [J]. Plant Physiology, 2006, 126(1): 45-51.
[8]CHAKRABORTY U, PRADHAN D. High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments [J]. Journal of Plant Interaction, 2011, 6(1): 43-52.
[9]XU S, LI J, ZHANG X, et al. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress[J]. Environmental and Experimental Botany, 2006, 56(3): 274-285.
[10]HAMEED A, GOHER M, IQBAL N. Heat stress-induced cell death, changes in antioxidants, lipid peroxidation, and protease activity in wheat leaves[J]. Journal of Plant Growth Regulation, 2012, 31(3): 283-291.
[11]SENTHIL-KUMAR M, KUMAR G, SRIKANTHBABU V, et al. Assessment of variability in acquired thermotolerance: potential option to study genotypic response and the relevance of stress genes[J]. Journal of Plant Physiology, 2007, 164(2): 111-125.
[12] MAESTRI E, KLUEVA N, PERROTTA C, et al. Molecular genetics of heat tolerance and heat shock proteins in cereals[J]. Plant Molecular Biology, 2002, 48(5/6): 667-681.
[13]GARG N, MANCHANDA G. ROS generation in plants: boon or bane? [J]. Plant Biosystem, 2009, 143(1): 81-96.
[14]WAGNER D, PRZYBYLA D, OP DEN CAMP R, et al. The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana[J]. Science, 2004, 306(5699): 1183-1185.
[15]MONTILLET J L, CHAMNONGPOL S, RUSTERUCCI C, et al. Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves [J]. Plant Physiology, 2005, 138(3): 1516-1526.
[16]PASTORE A, MARTIN S R, POLITOU A, et al. Unbiased cold denaturation: low- and high-temperature unfolding of yeast frataxin under physiological conditions [J]. Journal of the American Chemical Society, 2007, 129(17): 5374-5375.
[17]YAMADA K, FUKAO Y, HAYASHI M, et al. Cytosolic HSP90 regulated the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana [J]. Journal of Biological Chemistry, 2007, 282(52): 37794-37804.
[18]VON KOSKULL-DORING P, SCHARF K D, NOVER L. The diversity of plant heat stress transcription factors [J]. Trends in Plant Science, 2007, 12(10): 452-457.
[19]GUPTA N K, AGARWAL S, AGARWAL V P, et al. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings[J]. Acta Physiologiae Plantarum, 2013, 35(6): 1837-1842.
[20] SAIRAM R K, DESHMUKH P S, SAXENA D C. Role of antioxidant systems in wheat genotypes tolerance to water stress[J]. Biologia Plantarum, 1998, 41(3): 387-394.
[21] SAIRAM R K, SRIVASTAVA G C, SAXENA D C. Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes[J]. Biologia Plantarum, 2000, 43(2): 245-251.
[22] MITTLER R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405-410.
[23] ALMESELMANI M, DESHMUKH P S, SAIRAM R K, et al. Protective role of antioxidant enzymes under high temperature stress[J]. Plant Science, 2006, 171(3): 382-388.
[24] VAN BREUSEGEM F, VRANOV E, DAT J F, et al. The role of active oxygen species in plant signal transduction[J]. Plant Science, 2001, 161(3): 405-414.
[25]ESFANDIARI E, SHEKARI F, ESFANDIAR M. The effect of salt stress on antioxidant enzymes activity and lipid peroxidation on the wheat seedlings [J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2007, 35(1): 48-56.
[26]WAHID A, GELANI S, ASHRAF M, et al. Heat tolerance in plants: an overview[J]. Environmental and Experimental Botany, 2007, 61(3): 199-223.
[27] NOCTOR G, FOYER C H. Ascorbate and glutathione: keeping active oxygen under control[J]. Annual Review of Plant Biology, 1998, 49(1): 249-279.
[28] TRIPATHY B C, OELMLLER R. Reactive oxygen species generation and signaling in plants[J]. Plant Signaling & Behavior, 2012, 7(12): 1621-1633.
[29]DIXON D P, COLE D J, EDWARD R. Cloning and characterization of plant theta and zeta class GSTs: implication for plant GST classification [J]. Chemico-biological Interactions, 2001, 133: 33-36.
[30]DIXON D P, CUMMINIS I, COLE D J, et al. Glutathione mediated detoxification system in plants [J]. Current Opinion in Plant Biology, 1998, 1(3): 258-266.
[31] ROXAS V P, LODHI S A, GARRETT D K, et al. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase[J]. Plant and Cell Physiology, 2000, 41(11): 1229-1234.
[32]KAUSHAL N, GUPTA K, BHANDHARI K, et al. Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism [J]. Physiology and Molecular Biology of Plants, 2011, 17(3): 203-213.
[33]GOYAL M, ASTHIR B. Polyamine catabolism influences antioxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress[J]. Plant Growth Regulation, 2010, 60(1): 13-25.
[34]SANDORF I, HOLLANDER-CZYTKO H. Jasmonate is involved in the induction of tyrosine aminotransferase and tocopherol biosynthesis in Arabidopsis thaliana [J]. Planta, 2002, 216(1): 173-179.
[35]KANWISCHER M, PORFIROVA S, BERGMULLER E, et al. Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress [J]. Plant Physiology, 2005, 137(2): 713-723.
[36]MUNN-BOSCH S. The role of α-tocopherol in plant stress tolerance[J]. Journal of Plant Physiology, 2005, 162(7): 743-748.
[37]SUZUKI N, KOUSSEVITZKY S, MITTLER R, et al. ROS and redox signalling in the response of plants to abiotic stress [J]. Plant, Cell and Environment, 2012, 35(2): 259-270.
[38]MORIMOTO R I. Cells in stress: transcriptional activation of heat shock genes [J]. Science, 1993, 259(5100): 1409-1410.
[39]GUPTA S C, SHARMA A, MISHRA M, et al. Heat shock proteins in toxicology: how close and how far?[J]. Life Sciences, 2010, 86(11/12): 377-384.
[40]BIAMONTI G, CACERES J F. Cellular stress and RNA splicing [J]. Trends in Biochemical Sciences, 2009, 34(3):146-153.
[41] SUN W, VAN MONTAGU M, VERBRUGGEN N. Small heat shock proteins and stress tolerance in plants[J]. Biochimica et Biophysica Acta, 2002, 1577(1): 1-9.
[42]SCHUETZ T J, GALLO G J, SHELDON L, et al. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans [J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88: 6911-6915.
[43]BANIWAL S K, BHARTI K, CHAN K Y, et al. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors [J]. Journal of Biosciences, 2004,29(4): 471-487.
[44]HU W, HU G, HAN B. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice[J]. Plant Science, 2009, 176(4): 583-590.
[45]QU A L, DING Y F, JIANG Q, et al. Molecular mechanisms of the plant heat stress response[J]. Biochemical and Biophysical Research Communications, 2013, 432(2): 203-207.
[46] CZARNECKA-VERNER E, YUAN C X, SCHARF K D, et al. Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential[J]. Plant Molecular Biology, 2000, 43(4): 459-471.
[47]LEVITT M, GERSTEIN M, HUANG E, et al. Protein folding: the endgame[J]. Annual Review of Biochemistry, 1997, 66(1): 549-579.
[48]FEDER M E, HOFMANN G E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology[J]. Annual Review of Physiology, 1999, 61(1): 243-282.
[49] SCHULZE-LEFERT P. Plant immunity: the origami of receptor activation[J]. Current Biology, 2004, 14(1): 22-24.
[50]PANARETOU B, ZHAI C. The heat shock proteins: their roles as multi-component machines for protein folding[J]. Fungal Biology Reviews, 2008, 22(3/4): 110-119.
[51]TIMPERIO A M, EGID M G, ZOLLA L. Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP) [J]. Journal of Proteomics, 2008, 71: 391-411.
[52]TRIPP J, MISHRA S K, SCHARF K D. Functional dissection of the cytosolic chaperone network in tomato mesophyll protoplasts[J]. Plant, Cell & Environment, 2009, 32(2): 123-133.
[53]LIU H C, LIAO H Y, CHARNG Y Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis [J]. Plant, Cell & Environment, 2011, 34(5): 738-751.
[54]SUMESH K V, SHARMA-NATU P, GHILDIYAL M C. Starch synthase activity and heat shock protein in relation to thermal tolerance of developing wheat grains [J]. Biologia Plantarum, 2008, 52(4): 749-753.
[55]SULEMAN P, REDHA A, AFZAL M, et al. Temperature-induced changes of malondialdehyde, heat-shock proteins in relation to chlorophyll fluorescence and photosynthesis in Conocarpus lancifolius (Engl.) [J]. Acta Physiologiae Plantarum, 2013, 35(4): 1223-1231.
[56]DEROCHER A E, VIERLING E. Developmental control of small heat shock protein expression during pea seed maturation [J]. Plant Journal, 1994, 5(1): 93-102.
[57]AGARWAL M, SARKAR N, GROVER A. Low molecular weight heat shock proteins in plants [J]. Journal of Plant Biology, 2003, 30: 141-149.
[58]VIERLING E. The roles of heat shock proteins in plants[J]. Annual Review of Plant Biology, 1991, 42(1): 579-620.
[59]MORROW G, TANGUAY R M. Small heat shock protein expression and functions during development [J]. The International Journal of Biochemistry & Cell Biology, 2012, 44(10): 1613-1621.
[60]SHARMA-NATU P, SUMESH K V, GHILDIYAL M C. Heat shock protein in developing grains in relation to thermotolerance for grain growth in wheat [J]. Journal of Agronomy and Crop Science, 2010, 196: 76-80.
[61]HECKATHORN S A, DOWNS C A, SHARKEY T D, et al. The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress[J]. Plant Physiology, 1998, 116: 439-444.
[62]PREISS J, SIVAK M N. Starch synthesis in sinks and sources [M]. New York: Marcel Dekker Inc, 1996:63-96.
[63]HASANUZZAMAN M, HOSSAIN M A, FUJITA M. Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings [J]. Plant Biotechnology Reports, 2011, 5(4): 353-365.
[64]SAKAMOTO A, MURATA N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants [J]. Plant Cell and Environment, 2002, 25(2): 163-171.
[65]RASHEED R, WAHID A, FAROOQ M, et al. Role of proline and glycine betaine pretreatments in improving heat tolerance of sprouting sugarcane (Saccharum sp.) buds [J]. Plant Growth Regulation, 2011, 65(1): 35-45.
[66]宰学明,夏连全,闫道良,等. 外源Ca2+对高温强光胁迫下滨梅幼苗的保护效应[J]. 西北植物学报, 2011, 31(3): 558-563.
[67]GONG M, LI Y J, CHEN S Z. Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems[J]. Journal of Plant Physiology, 1998, 153(3/4): 488-496.
[68]LARKINDALE J, KNIGHT M R. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid[J]. Plant Physiology, 2002, 128(2): 682-695.
[69]RODRIGUEZ M, CANALES E, BORRAS-HIDALGO O. Molecular aspects of abiotic stress in plants [J]. Biotecnologia Aplicada, 2005, 22(1): 1-10.
[70]VINOCUR B, ALTMAN A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations [J]. Current Opinion in Biotechnology, 2005, 16(2): 123-132.
[71]VON KOSKULL-DRING P, SCHARF K D, NOVER L. The diversity of plant heat stress transcription factors[J]. Trends in Plant Science, 2007, 12(10): 452-457.
[72]MILLER G, SUZUKI N, RIZHSKY L, et al. Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses[J]. Plant Physiology, 2007, 144: 1777-1785.
[73]MILLER G, SHULAEV V, MITTLER R. Reactive oxygen signaling and abiotic stress [J]. Physiologia Plantarum, 2008, 133: 481-489.
[74]YOSHIDA T, SAKUMA Y, TODAKA D, et al. Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system [J]. Biochemical and Biophysical Research Communications, 2008, 368: 515-521.
[75]CHEN H, HWANG J E, LIM C J, et al. Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response[J]. Biochemical and Biophysical Research Communications, 2010, 401(2): 238-244.
[76]李绪友,郑进,李万德.与植物抗逆性有关的转录因子研究概况[J].中国西部科技, 2006(36): 62.