[1]蔡幸哲,彭林,刘珂芮,等.沙门氏菌噬菌体裂解酶LysLorf22的制备及溶菌活性分析[J].江苏农业学报,2020,(01):212-218.[doi:doi:10.3969/j.issn.1000-4440.2020.01.030]
 CAI Xing-zhe,PENG Lin,LIU Ke-rui,et al.Preparation and activity analysis of endolysin LysLorf22 derived from Salmonella bacteriophage[J].,2020,(01):212-218.[doi:doi:10.3969/j.issn.1000-4440.2020.01.030]
点击复制

沙门氏菌噬菌体裂解酶LysLorf22的制备及溶菌活性分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年01期
页码:
212-218
栏目:
加工贮藏·质量安全
出版日期:
2020-02-29

文章信息/Info

Title:
Preparation and activity analysis of endolysin LysLorf22 derived from Salmonella bacteriophage
作者:
蔡幸哲彭林刘珂芮刘书亮李诚刘爱平
(四川农业大学食品学院,四川雅安625014)
Author(s):
CAI Xing-zhePENG LinLIU Ke-ruiLIU Shu-liangLI ChengLIU Ai-ping
(College of Food Science, Sichuan Agricultural University, Ya′an 625014, China)
关键词:
沙门氏菌噬菌体裂解酶外膜渗透剂
Keywords:
Salmonellabacteriophageendolysinouter membrane permeabilizing agent
分类号:
TS207.7
DOI:
doi:10.3969/j.issn.1000-4440.2020.01.030
文献标志码:
A
摘要:
根据沙门氏菌噬菌体Lumpael的全基因组序列,预测该噬菌体裂解酶基因并对其进行生物信息学分析;优化其在大肠杆菌表达系统中的表达,并分析噬菌体裂解酶LysLorf22与外膜渗透剂最优组合的溶菌效果。结果表明,裂解酶LysLorf22的相对分子质量为1.76×104,等电点为9.14,其较优表达条件为:表达菌株Escherichia coli BL21,37 ℃诱导4 h。LysLorf22裂解谱较宽,最佳工作浓度为375 nmol/L,在30 min内可使氯仿处理的Salmonella Enteritidis ATCC 13076菌悬液OD600下降0.72;375 nmol/L的LysLorf22与0.5 mmol/L乙二胺四乙酸二钠联用对Salmonella Enteritidis ATCC 13076溶菌效果最佳,在2 h内可使活菌数从1.62×109CFU/ml下降至4.31×108CFU/ml。
Abstract:
In this study, the gene encoding endolysin was predicted and analyzed by bioinformatic software based on the genomic sequence of Salmonella bacteriophage Lumpael. Besides, the expression of LysLorf22 in Escherichia coli expression system was optimized, and the bactericidal effect of LysLorf22 combined with outer membrane permeabilizing agents was analyzed. The results showed that the molecular weight of LysLorf22 was 1.76×104, and the isoelectric point was 9.14. The optimal expression condition of LysLorf22 was using expression strain Escherichia coli BL21, induced at 37 ℃ for four hours. LysLorf22 had a broad lytic spectrum, and its optimal working concentration was 375 nmol/L, in which the OD600 of chloroform-treated Salmonella Enteritidis ATCC 13076 could be reduced by 0.72 in 30 minutes. The combination of 375 nmol/L LysLorf22 and 0.5 mmol/L disodium ethylenediamine tetraacetate showed the best lytic effect on Salmonella Enteritidis ATCC 13076, which reduced the viable cells from 1.62×109CFU/ml to 4.31×108CFU/ml in two hours.

参考文献/References:

[1]包红朵,张辉,王冉. 宽噬菌谱肠炎沙门氏菌噬菌体的生物学特性[J]. 江苏农业学报, 2011, 27(5): 1117-1121.
[2]包红朵,周艳,张鹏禹,等. 沙门氏菌裂解性噬菌体的分离鉴定及其生物学特性[J]. 食品科学, 2015, 36(5): 131-136.
[3]王晶钰,董睿,王利勤,等. 市售鲜鸡蛋中沙门氏菌的分离鉴定及毒力岛基因检测[J]. 食品科学, 2012, 33(16): 154-158.
[4]朱冬梅,彭珍,刘书亮,等. 肉鸡屠宰加工过程中沙门氏菌的污染情况及其耐药性分析[J]. 食品科学, 2014, 35(17): 214-219.
[5]胡付品,郭燕,朱德妹,等. 2017年CHINET中国细菌耐药性监测[J]. 中国感染与化疗杂志, 2018, 18(3): 241-251.
[6]冯彩峰,林居纯,张飞,等. 食品动物源沙门氏菌血清型及对β-内酰胺类耐药性调查[J]. 食品科学, 2015,36(7):101-104.
[7]JACOB F, FUERST C R. The mechanism of lysis by phage studied with defective lysogenic bacteria[J]. Microbiology, 1958, 18(2): 518-526.
[8]渠坤丽,徐永平,李振,等. 提高噬菌体裂解酶抗菌活性的研究进展[J]. 微生物学杂志, 2017, 37(1): 88-93.
[9]许东勤. 沙门氏菌噬菌体SLMP1裂解酶的重组表达及噬菌体在水产品中的应用研究[D]. 上海: 上海海洋大学, 2018.
[10]严晶,胡申才. 噬菌体裂解酶的应用概况[J]. 湖北农业科学, 2019, 58(10): 5-8.
[11]夏翡翡. 噬菌体裂解酶LysGH15与芹菜素联合应用治疗金黄色葡萄球菌肺炎的研究[D]. 长春: 吉林大学, 2016.
[12]张辉,周艳,包红朵,等. 噬菌体裂解酶结构域重构及其裂解功能分析[J]. 华北农学报, 2017, 32(6): 134-138.
[13]李萌. 宽裂解谱沙门氏菌噬菌体的基因组学分析及其重组内溶素抑菌活性研究[D]. 青岛: 中国海洋大学, 2014.
[14]朱丹,祝思路,付玉荣,等. 噬菌体裂解酶作用机制及用于细菌感染治疗的研究进展[J]. 基础医学与临床, 2018, 38(2): 241-245.
[15]杨曦. 大肠杆菌O157 Stx噬菌体裂解酶的原核表达及活性研究[D]. 上海: 上海交通大学, 2012.
[16]LIU A, XIONG Q, SHEN L, et al. A sandwich-type ELISA for the detection of Listeria monocytogenes using the well-oriented single chain Fv antibody fragment[J]. Food Control, 2017, 79: 156-161.
[17]MIKOULINSKAIA G V, ODINOKOVA I V, ZIMIN A A, et al. Identification and characterization of the metal ion-dependent l-alanoyl-d-glutamate peptidase encoded by bacteriophage T5[J]. Febs Journal, 2009, 276(24):7329-7342.
[18]GENG P, HU Y, ZHOU G, et al. Characterization of three autolysins with activity against cereulide-producing Bacillus isolates in food matrices[J]. International Journal of Food Microbiology, 2017, 241:291-297.
[19]LEGOTSKY S A, VLASOVA K Y, PRIYMA A D, et al. Peptidoglycan degrading activity of the broad-range Salmonella bacteriophage S-394 recombinant endolysin[J]. Biochimie, 2014, 107: 293-299.
[20]SCHMELCHER M, POWELL A M, CAMP M J, et al. Synergistic streptococcal phage λSA2 and B30 endolysins kill streptococci in cow milk and in a mouse model of mastitis[J]. Applied Microbiology & Biotechnology, 2015, 99(20): 1-12.
[21]BRIERS Y, LAVIGNE R, VOLCKAERT G, et al. A standardized approach for accurate quantification of murein hydrolase activity in high-throughput assays[J]. Journal of Biochemical Biophysical Methods, 2007,70: 531-533.
[22]HONG J, KIM K P, HEU S, et al. Identification of host receptor and receptor-binding module of a newly sequenced T5-like phage EPS7[J]. FEMS Microbiology Letters, 2008, 289(2): 202-209.
[23]ZIMMER M, VUKOV N, SCHERER S, et al. The murein hydrolase of the bacteriophage φ3626 dual lysis system is active against all tested clostridium perfringens strains[J]. Applied and Environmental Microbiology, 2002, 68(11): 5311-5317.
[24]YOONG P, SCHUCH R, NELSON D, et al. Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium[J]. Journal of Bacteriology, 2004, 186(14): 4408-4412.
[25]SCHUCH R, NELSON D, FISCHETTI V A. A bacteriolytic agent that detects and kills Bacillus anthracis[J]. Nature, 2002, 418(6900): 884-889.
[26]OLIVEIRA H, THIAGARAJAN V, WALMAGH M, et al. A thermostable salmonella phage endolysin, lys68, with broad bactericidal properties against gram-negative pathogens in presence of weak acids[J]. PLoS ONE, 2014, 9(10): e108376.
[27]LIM J A, SHIN H, KANG D H, et al. Characterization of endolysin from a Salmonella typhimurium-infecting bacteriophage SPN1S[J]. Research in Microbiology, 2012, 163(3): 233-241.
[28]MARIANNA M, ANNALISA L, MILENA S, et al. Use of lysozyme, nisin, and EDTA combined treatments for maintaining quality of packed ostrich patties[J]. Journal of Food Science, 2010, 75(3): 178-186.
[29]TANJI Y, SHIMADA T, YOICHI M, et al. Toward rational control of Escherichia coli O157:H7 by a phage cocktail[J]. Applied Microbiology and Biotechnology, 2004, 64(2): 270-274.
[30]TANJI Y, SHIMADA T, FUKUDOMI H, et al. Therapeutic use of phage cocktail for controlling Escherichia coli O157:H7 in gastrointestinal tract of mice[J]. Journal of Bioscience and Bioengineering, 2005, 100(3): 280-287.

相似文献/References:

[1]钟希娜,何涛,葛展霞,等.一种对mcr-1阳性大肠杆菌具有裂解作用的噬菌体生物学特性[J].江苏农业学报,2018,(02):452.[doi:doi:10.3969/j.issn.1000-4440.2018.02.033]
 ZHONG Xi-na,HE Tao,GE Zhan-xia,et al.Characterization of a lytic bacteriophage infecting mcr-1-positive Escherichia coli[J].,2018,(01):452.[doi:doi:10.3969/j.issn.1000-4440.2018.02.033]
[2]葛展霞,钟希娜,朱炳海,等.NDM-5阳性大肠杆菌裂解性噬菌体的生物学特性[J].江苏农业学报,2018,(03):699.[doi:doi:10.3969/j.issn.1000-4440.2018.03.032]
 GE Zhan-xia,ZHONG Xi-na,ZHU Bing-hai,et al.The biological characteristics of a bacteriophage against NDM-5 positive Escherichia coli[J].,2018,(01):699.[doi:doi:10.3969/j.issn.1000-4440.2018.03.032]
[3]李陇平,杨吉,白蹉蹉,等.一株绒山羊源大肠杆菌噬菌体φPTK的分离鉴定及生物学特性分析[J].江苏农业学报,2018,(04):847.[doi:doi:10.3969/j.issn.1000-4440.2018.04.019]
 LI Long-ping,YANG Ji,BAI Cuo-cuo,et al.Isolation, identification and biological properties of a lytic phage against goat (Capra hircus)-associated Escherichia coli[J].,2018,(01):847.[doi:doi:10.3969/j.issn.1000-4440.2018.04.019]

备注/Memo

备注/Memo:
收稿日期:2019-06-22基金项目:国家自然科学基金项目(31801629);四川农业大学大学生创新训练计划项目(201910626138)作者简介:蔡幸哲(1998-),女,浙江乐清人,本科生,主要从事食品微生物研究。(E-mail)908301008@qq.com通讯作者:刘爱平,(E-mail)aipliu@outlook.com
更新日期/Last Update: 2020-03-13