[1]赵旭,刘涛,姚慧敏,等.长期根际CO2浓度升高对雾培番茄植株营养吸收及果实产量和品质的影响[J].江苏农业学报,2020,(01):158-163.[doi:doi:10.3969/j.issn.1000-4440.2020.01.022]
 ZHAO Xu,LIU Tao,YAO Hui-min,et al.Effects of long-term elevated root-zone CO2 concentration on nutrition uptake, fruit yield and quality of aeroponic tomato[J].,2020,(01):158-163.[doi:doi:10.3969/j.issn.1000-4440.2020.01.022]
点击复制

长期根际CO2浓度升高对雾培番茄植株营养吸收及果实产量和品质的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年01期
页码:
158-163
栏目:
园艺
出版日期:
2020-02-29

文章信息/Info

Title:
Effects of long-term elevated root-zone CO2 concentration on nutrition uptake, fruit yield and quality of aeroponic tomato
作者:
赵旭12刘涛12姚慧敏12杨洁12
(1.山东省农业可持续发展研究所, 山东济南250100;2.农业农村部华东都市农业重点实验室,山东济南250100)
Author(s):
ZHAO Xu12LIU Tao12YAO Hui-min12YANG Jie12
(1.Shandong Institute of Agricultural Sustainable Development, Jinan 250100, China;2.Key Laboratory of East China Urban Agriculture, Ministry of Agriculture and Rural Affairs, Jinan 250100, China)
关键词:
根际CO2升高雾培番茄营养吸收产量品质
Keywords:
elevated root zone CO2aeroponic tomatonutrient uptakeyieldquality
分类号:
S641.2
DOI:
doi:10.3969/j.issn.1000-4440.2020.01.022
文献标志码:
A
摘要:
采用气雾法栽培,研究不同根际CO2体积比处理[(370±10) μl/L (CK)、(2 500±50) μl/L、(5 000±100) μl/L和(10 000±200) μl/L],对番茄植株根系营养元素吸收以及产量和品质的影响。结果表明:当处理60 d时各CO2加富处理的根系干质量显著低于对照,随着根际CO2体积比的升高,分别比对照减少17.9%、13.2%和6.1%;茎叶干质量分别比对照减少6.1%、4.4%和2.6%。CO2加富处理根系Mg2+-ATPase活性开始变化缓慢,从处理40 d开始急剧下降,到处理结束时,对照根系的Mg2+-ATPase活性显著高于根际CO2加富处理,分别是2 500 μl/L、5 000 μl/L和10 000 μl/L CO2处理的1.1、1.3和1.8倍。在20 d时,根际CO2加富处理的植株根系Ca2+-ATPase活性均显著低于对照,在处理结束时,根际10 000 μl/L和5 000 μl/L CO2处理显著低于2 500 μl/L处理和对照,但二者间无显著差异。根际CO2处理60 d,叶片中N、P和Mg含量显著低于对照,其中2 500 μl/L、5 000 μl/L和10 000 μl/L处理叶片中P含量分别比对照减少12.6%、17.0%和19.3%,Mg含量分别比对照减少11.1%、18.5%和20.7%。根际CO2加富处理植株的单株结果数与对照无显著性差异,但对照植株单株产量和果实可溶性糖含量显著高于各根际CO2加富处理。
Abstract:
Effects of different root-zone CO2 concentration, such as (370±10) μl/L(CK), 2 500±50) μl/L, (5 000±100) μl/L and (10 000±200) μl/L, on plant root nutrient uptake, fruit yield and quality of aeroponic tomato were investigated. The results showed that the root dry weight of each treatment was significantly lower than that of the control when treated for 60 days. With the increase of rhizosphere CO2 concentration, the root dry weight decreased by 17.9%, 13.2% and 6.1%, and the dry weight of stems and leaves decreased by 6.1%, 4.4% and 2.6%, respectively. The activity of Mg2+-ATPase in the roots of tomato plants under the treatment of CO2 enrichment changed slowly at the beginning, and decreased sharply from 40 days after treatment. At the end of the treatment, the Mg2+-ATPase activity in the control was significantly higher than that in the treatment of CO2 enrichment. The Mg2+-ATPase activity in roots of tomato plants in the control 1.1 times, 1.3 times and 1.8 times as high as that in the treatments of 2 500 μl/L CO2, 5 000 μl/L CO2 and 10 000 μl/L CO2, respectively. At 20 days, the Ca2+-ATPase activity in the roots of tomato plants in the treatment of CO2 enrichment was significantly lower than that in the control. At the end of the treatment, the Ca2+-ATPase activity in roots of tomato plants in the treatments of 10 000 μl/L CO2 and 5 000 μl/L CO2 was significantly lower than that in the treatment of 2 500 μl/L CO2 and control, but there was no significant difference between then. After 60 days of CO2 treatment, the contents of N, P and Mg in the leaves were significantly lower than those in the control. Compared with the control, the P content of leaves in the treatments of 2 500 μl/L CO2, 5 000 μl/L CO2 and 10 000 μl/L CO2 was decreased by 12.6%, 17.0% and 19.3%, the content of Mg was reduced by 11.1%, 18.5% and 20.7%, respectively. There was no significant difference in the number of fruit per plant between the rhizosphere CO2 treatments and control, but the yield per plant and soluble sugar content of fruits in the control were significantly higher than those in the rhizosphere CO2 enrichment treatment.

参考文献/References:

[1]HANS P K, MANUELA Z. Sensing of tomato plant response to hypoxia in the root environment[J].Scientia Horticulturae, 2009,122 (1):17-25.
[2]刁一伟,郑循华,王跃思,等. 开放式空气CO2浓度增高条件下旱地土壤气体CO2浓度廓线测定[J].应用生态学报,2002, 13(10): 1249-1252.
[3]陆时万,徐祥生,沈敏健.植物学[M].北京:高等教育出版社,1991.
[4]WEI X, KITAYA Y, SHIBUYA T. Effects of soil gas composition on transpiration and leaves conductance of bamboos[J]. Journal of Agricultural Meteorology,2016, 60(5): 845-848.
[5]李军,李长辉,刘喜才,等. 土壤通气性对马铃薯产量的影响及其生理机制[J].作物学报,2004,30(3):279-283.
[6]BORU G, VANTOAI T, ALVES J, et al. Responses of soybean to oxygen deficiency and elevated root-zone carbon dioxide concentration[J]. Annals of Botany, 2003,91: 447-453.
[7]YANG X, ROMHELD V, MARSCHNER H. Effect of bicarbonate and root zone temperature on uptake of Zn, Fe,Mn and Cu by different rice cultivars grown in calcareous soil[J]. Plant and Soil, 1993,155/156:441-444.
[8]MARSCHER H. The mineral nutrition of higher plants[M].2nd Edition. London: Academic Press, 1995:889.
[9]李天来,陈亚东,刘义玲,等. 根际CO2浓度对网纹甜瓜根系生长和活力的影响[J].农业工程学报,2009,25(4): 210-215
[10]石元豹,曹兵,宋丽华. CO2 浓度倍增对宁夏枸杞种植地土壤养分及微生物的影响[J].江苏农业学报,2016,32(1):201-206.
[11]KAMMANN C A. New sampling technique to monitor concentrations of CO2, CH4, and N2O in air at well-defined depths in soils with varied water potential[J].European Journal of Soil Science,2001,52:297-303.
[12]郝建军,刘延吉. 植物生理学实验技术[M]. 沈阳:辽宁科学技术出版社,2001.
[13]上海市植物生理学会. 现代植物生理学实验指南[M]. 北京:科学出版社,1999.
[14]鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 263-275.
[15]李胜利,齐子杰,王建辉. 根际通气环境对盆栽黄瓜生长的影响[J].河南农业大学学报,2008,42(3):280-288.
[16]蒋倩,朱建国,朱春梧,等. 大气CO2浓度升高对糙米和精米中矿质营养元素含量的影响[J].江苏农业学报,2018,34(6):1217-1224.
[17]牛文全,郭超. 根际土壤通透性对玉米水分和养分吸收的影响[J].应用生态学报, 2010,21(11):2785-2791.
[18]KITAYA Y, HIRAI H, ENDO R, et al. Effects of water contents and CO2 concentrations in soil on growth of sweet potato[J]. Field Crops Research, 2013,152: 36-43.
[19]BUNNELL B T, MCCARTY L B, DODD R B, et al. Creeping bent grass growth response to elevated soil carbon dioxide[J]. Hortscience,2002, 37(2): 367-370.
[20]潘有强,李杨瑞,陈如凯,等. 甘蔗节间Mg2+-ATP酶活性与节间生长的关系[J]. 福建农林大学学报,2003,32(2): 150-155.
[21]郝鲁宁,余叔文. 大麦根细胞质膜Ca2+-ATP酶和Ca2+转运系统的特性[J].植物生理学报, 1993,19(2):172-180.
[22]肖平,张旭家,沈昕. 质膜Ca2+-ATPase的活性和功能[J].中国生物化学与分子生物学报, 2008,24(6):496-504.
[23]BELITSER N V, ZAALISHVILI G V, SYTNIANSKAJA N P. Ca2+-binding sites and Ca2+-ATPase activity in barley root tip cells[J]. Protoplasma, 1982, 111(1):63-78.
[24]门福义, 蒙美莲,刘梦云,等. 马铃薯不同品种淀粉积累生理基础研究───品种淀粉含量与叶部氮磷钾浓度的关系[J].马铃薯杂志, 1995,9(4): 193-197.
[25]ARTECA R N, POOVAIAHB W, SMITH O E. Changes in carbon fixation, tuberization, and growth induced by CO2 application to the root zone of potato plant[J]. Science, 1979,205 (4412): 1279-1280.

备注/Memo

备注/Memo:
收稿日期:2019-06-13基金项目:山东省农业科学院农业科技创新工程项目(CXGC2017B03)作者简介:赵旭(1980-),女,辽宁沈阳人,博士,高级农艺师,主要从事设施蔬菜生理生态以及都市农业栽培模式研究。(E-mail)cfszhaoxu@shandong.cn通讯作者:刘涛,(E-mail)liutaocfs@163.com;姚慧敏,(E-mail)LDZDGC@163.com
更新日期/Last Update: 2020-03-13