参考文献/References:
[1]MASSAGU J. TGF-β signal transduction[J]. Annual Review of Biochemistry, 1998, 67: 753-791.
[2]STEPHEN T L, RUTKOWSKI M R, ALLEGREZZA M J, et al. Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression[J]. Immunity, 2014, 41(3): 427-439.
[3]BARCELLOS-HOFF M H, CUCINOTTA F A. New tricks for an old fox: impact of TGFβ on the DNA damage response and genomic stability[J]. Science Signaling, 2014, 7(341): re5.
[4]HAN A, ZHAO H, LI J, et al. ALK5-mediated transforming growth factor β signaling in neural crest cells controls craniofacial muscle development via tissue-tissue interactions[J]. Molecular and Cellular Biology, 2014, 34(16): 3120-3131.
[5]FENG Y, YUAN F, GUO H, et al. TGF-β1 enhances SDF-1-induced migration and tube formation of choroid-retinal endothelial cells by up-regulating CXCR4 and CXCR7 expression[J]. Molecular and Cellular Biochemistry, 2014, 397(1/2): 131-138.
[6]WIENER Z, BAND A M, KALLIO P, et al. Oncogenic mutations in intestinal adenomas regulate Bim-mediated apoptosis induced by TGF-β[J]. Proceedings of the National Academy of Sciences, 2014, 111(21): 2229-2236.
[7]MUOZ-ESPN D, CAAMERO M, MARAVER A, et al. Programmed cell senescence during mammalian embryonic development[J]. Cell, 2013, 155(5): 1104-1118.
[8]GRAFE I, YANG T, ALEXANDER S, et al. Excessive transforming growth factor-β signaling is a common mechanism in osteogenesis imperfecta[J]. Nature Medicine, 2014, 20(6): 670-675.
[9]WANG J, WANG Y, WANG Y, et al. Transforming growth factor β-regulated microRNA-29a promotes angiogenesis through targeting the phosphatase and tensin homolog in endothelium[J]. Journal of Biological Chemistry, 2013, 288(15): 10418-10426.
[10]PARK J G, LEE D H, MOON Y S, et al. Reversine increases the plasticity of lineage-committed preadipocytes to osteogenesis by inhibiting adipogenesis through induction of TGF-β pathway in vitro. [J]. Biochemical and Biophysical Research Communications, 2014, 446(1): 30-36.
[11]SULAIMAN W, NGUYEN D H. Transforming growth factor beta 1, a cytokine with regenerative functions[J]. Neural Regeneration Research, 2016, 11(10): 1549-1552.
[12]WANG Y W, LIOU N H, CHERNG J H, et al. siRNA-targeting transforming growth factor-β type I receptor reduces wound scarring and extracellular matrix deposition of scar tissue[J]. Journal of Investigative Dermatology, 2014, 134(7): 2016-2025.
[13]MUSTOE T A, PIERCE G F, THOMASON A, et al. Accelerated healing of incisional wounds in rats induced by transforming growth factor-beta[J]. Science, 1987, 237(4820): 1333-1336.
[14]GORDON K J, BLOBE G C. Role of transforming growth factor-β superfamily signaling pathways in human disease[J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2008, 1782(4): 197-228.
[15]CHANG A S, HATHAWAY C K, SMITHIES O, et al. Transforming growth factor-β1 and diabetic nephropathy[J]. American Journal of Physiology-Renal Physiology, 2015, 310(8): 689-696.
[16]ATTISANO L, WRANA J L. Signal transduction by the TGF-β superfamily[J]. Science, 2002, 296(5573): 1646-1647.
[17]DE CAESTECKER M. The transforming growth factor-β superfamily of receptors[J]. Cytokine & Growth Factor Reviews, 2004, 15(1): 1-11.
[18]MARIE J C, LIGGITT D, RUDENSKY A Y. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-β receptor[J]. Immunity, 2006, 25(3): 441-454.
[19]YANG M, ZHOU H. Grass carp transforming growth factor-β1 (TGF-β1): Molecular cloning, tissue distribution and immunobiological activity in teleost peripheral blood lymphocytes[J]. Molecular Immunology, 2008, 45(6): 1792-1798.
[20]YANG M, WANG X, CHEN D, et al. TGF-β1 exerts opposing effects on grass carp leukocytes: implication in teleost immunity, receptor signaling and potential self-regulatory mechanisms[J]. PLoS ONE, 2012, 7(4): e35011.
[21]WEI H, YANG M, ZHAO T, et al. Functional expression and characterization of grass carp IL-10: an essential mediator of TGF-β1 immune regulation in peripheral blood lymphocytes[J]. Molecular Immunology, 2013, 53(4): 313-320.
[22]WANG X, YANG X, WEN C, et al. Grass carp TGF-β1 impairs IL-1β signaling in the inflammatory responses: evidence for the potential of TGF-β1 to antagonize inflammation in fish[J]. Developmental & Comparative Immunology, 2016, 59: 121-127.
[23]LI L P, WANG R, LIANG W W, et al. Development of live attenuated Streptococcus agalactiae vaccine for tilapia via continuous passage in vitro[J]. Fish & Shellfish Immunology, 2015, 45(2): 955-963.
[24]ZHAN X, MA T, WU J, et al. Cloning and primary immunological study of TGF-β1 and its receptors TβR I/TβR II in tilapia (Oreochromis niloticus)[J]. Developmental & Comparative Immunology, 2015, 51(1): 134-140.
[25]张永德,林勇,冯鹏霏,等. 尼罗罗非鱼Lck多克隆抗体的制备及鉴定[J]. 南方农业学报, 2018(11): 2304-2310.
[26]PAUKNER R, STAUDIGL P, CHOOSRI W, et al. Expression, purification, and characterization of galactose oxidase of Fusarium sambucinum in E. coli[J]. Protein Expression and Purification, 2015, 108: 73-79.
[27]FERRER-MIRALLES N, SACCARDO P, CORCHERO J L, et al. General introduction: recombinant protein production and purification of insoluble proteins[M]. New York: Humana Press, 2015: 1-24.
[28]LILIE H, SCHWARZ E, RUDOLPH R. Advances in refolding of proteins produced in E. coli[J]. Current Opinion in Biotechnology, 1998, 9(5): 497-501.
[29]SRENSEN H P, MORTENSEN K K. Advanced genetic strategies for recombinant protein expression in Escherichia coli[J]. Journal of Biotechnology, 2005, 115(2): 113-128.
[30]VILLAVERDE A, CORCHERO J L, SERAS-FRANZOSO J, et al. Functional protein aggregates: just the tip of the iceberg[J]. Nanomedicine, 2015, 10(18): 2881-2891.
[31]CARRIO M, CUBARSI R, VILLAVERDE A. Fine architecture of bacterial inclusion bodies[J]. FEBS Letters, 2000, 471(1): 7-11.
[32]MITRAKI A, FANE B, HAASE-PETTINGELL C, et al. Global suppression of protein folding defects and inclusion body formation[J]. Science, 1991, 253(5015): 54-58.