[1]张猛,王琼,冯发运,等.稻壳生物炭搭载特基拉芽孢杆菌防治西瓜枯萎病[J].江苏农业学报,2019,(06):1308-1315.[doi:doi:10.3969/j.issn.1000-4440.2019.06.006]
 ZHANG Meng,WANG Qiong,FENG Fa-yun,et al.Control effects of Bacillus tequilensis boarded by rice husk-derived biochar on watermelon wilt disease[J].,2019,(06):1308-1315.[doi:doi:10.3969/j.issn.1000-4440.2019.06.006]
点击复制

稻壳生物炭搭载特基拉芽孢杆菌防治西瓜枯萎病()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年06期
页码:
1308-1315
栏目:
植物保护
出版日期:
2019-12-31

文章信息/Info

Title:
Control effects of Bacillus tequilensis boarded by rice husk-derived biochar on watermelon wilt disease
作者:
张猛1王琼1冯发运1李勇1袁建军2余向阳12
(1.江苏省农业科学院农产品质量安全与营养研究所/江苏省食品质量安全重点实验室-省部共建国家重点实验室培育基地,江苏南京210014;2.泉州师范学院海洋与食品学院/近海资源生物技术福建省高校重点实验室,福建泉州362000)
Author(s):
ZHANG Meng1WANG Qiong1FENG Fa-yun1LI Yong1YUAN Jian-jun2YU Xiang-yang12
(1.Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China;2.College of Oceanology and Food Science, Quanzhou Normal University/Inshore Resources Biotechnology Key Laboratery of Fujian Advanced Education, Quanzhou 362000, China)
关键词:
稻壳生物炭特基拉芽孢杆菌吸附搭载西瓜枯萎病
Keywords:
rice husk-derived biocharBacillus tequilensisadsorbed and boardedwatermelon wilt disease
分类号:
S436.42
DOI:
doi:10.3969/j.issn.1000-4440.2019.06.006
文献标志码:
A
摘要:
以稻壳为材料高温裂解制备生物炭,利用其优良吸附特性搭载特基拉芽孢杆菌防治西瓜苗期枯萎病。结果表明,500 ℃裂解温度下制备的稻壳生物炭的吸附性能最佳,在菌液中2 h,每1 g载菌量最大为6.77×1010个,且能显著延长特基拉芽孢杆菌在土壤中的存活时间。经稻壳生物炭吸附搭载后,特基拉芽孢杆菌对西瓜枯萎病的防效为83.1%,显著高于直接施用菌液的防效(72.5%)。载特基拉芽孢杆菌稻壳生物炭施入后,土壤中过氧化氢酶、脲酶、纤维素酶、蔗糖酶及脱氢酶活性分别为4.40 μmol/g、1.43 mg/(d·g)、3.05 mg/(d·g)、3.36 mg/(d·g)和33.72 μg/(d·g),较对照显著升高,并促进西瓜幼苗生物量增长54.4%左右。本研究结果对利用生物炭搭载生防微生物防治作物土传病具有一定指导意义。
Abstract:
The control effects on watermelon wilt diseases of the Bacillus tequilensis boarded by the biochar, which pyrolyzed and carbonized from rice husk at high temperature, were studied. The results showed that absorption properties of the rice husk-derived biochar prepared at 500 ℃ were the best. When soaked in bacteria solution for two hours, the maximum number of bacteria adsorbed by one gram of the biochar was 6.77×1010. Moreover, the survival time of the B. tequilensis boarded by the biochar in soil was significantly increased. The control effect of the B. tequilensis adsorbed and boarded by the biochar on watermelon wilt disease was 83.1%, which was significantly higher than that of B. tequilensis without being treated with biochar. Meanwhile, the biomass of watermelon seedling was increased by 54.4% under the treatment of the B. tequilensis adsorbed and boarded by the biochar and the activities of catalase, urease, cellulase, sucrase and dehydrogenase were 4.40 μmol/g, 1.43 mg/(d·g), 3.05 mg/(d·g), 3.36 mg/(d·g) and 33.72 μg/(d·g), respectively. The activities of the above soil enzymes in the treatment of B. tequilensis boarded by the biochar were significantly higher than those in the control. These results of this study have certain guiding significance for the use of biocontrol microorganism adsorbed and boarded by the biochar to control soil-borne crop diseases.

参考文献/References:

[1]鲍婉雪, 钟川, 赵文宗, 等. 瓠瓜砧木嫁接西瓜苗对枯萎病的抗性综合评价[J]. 南方农业学报,2017,48(3):441-447.
[2]LYU G, GUO S, ZHANG H, et al. Transcriptional profiling of watermelon during its incompatible interaction with Fusarium oxysporum f. sp. niveum[J]. European Journal of Plant Pathology, 2011, 131(4): 585.
[3]任迁琪,吴洪生,李季,等. 西瓜枯萎病拮抗链霉菌分离鉴定及盆栽抗病试验[J]. 生物技术通报, 2016, 32 (9): 107-113.
[4]李晓慧,梁慎,常高正,等.西瓜枯萎病苗期抗性鉴定及抗源筛选[J].江苏农业科学,2018,46(17):91-94.
[5]王小慧,张国漪,李蕊,等. 拮抗菌强化的生物有机肥对西瓜枯萎病的防治作用[J]. 植物营养与肥料学报, 2013, 19 (1): 223-231.
[6]吕湘江,李清萍,范淑英. 西瓜枯萎病综合防治研究进展[J]. 北方园艺, 2015, 37 (6): 187-190.
[7]LI X, ZHANG Y, WEI Z, et al. Antifungal activity of isolated Bacillus amyloliquefaciens SYBC H47 for the biocontrol of peach gummosis [J]. PLoS ONE, 2016, 11(9):e0162125.
[8]谢洁,任慧爽,唐翠明,等. 一株桑树内生细菌的鉴定和对桑椹核地杖菌的拮抗作用[J]. 蚕业科学, 2015, 41(5):815-824.
[9]王瑶,赵月菊,邢福国,等. 禾谷镰刀菌拮抗菌株的筛选及鉴定[J]. 核农学报, 2017, 31(6): 1128-1136.
[10]冯云利,奚家勤,马莉,等. 烤烟品种NC297内生细菌中拮抗烟草黑胫病的生防菌筛选及种群组成分[J]. 云南大学学报(自然科学版), 2011, 33(4):488-496.
[11]GHOLAMI M, KHAKVAR R, ALIASGHARZAD N. Application ofendophytic bacteria for controlling anthracnose disease (Colletotrichum lindemuthianum) on bean plants [J]. Scripted HTML Pflanzenschutz, 2013, 46(15):1831-1838.
[12]袁雪,侯旭,胡晓,等. 桃褐腐病拮抗细菌的筛选、鉴定及生防作用[J]. 北京农学院学报, 2018, 33(4): 7-13.
[13]RANIA A B A, JABNOUN-KHIAREDDINE H, NEFZI A, et al. Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Solanum elaeagnifolium stems [J]. Biological Control, 2016, 97(10): 80-88.
[14]张猛,王琼,冯发运,等. 植物内生特基拉芽胞杆菌的分离、鉴定及防治西瓜枯萎病效果[J]. 中国生物防治学报, 2017, 33 (3): 371-377.
[15]孔丝纺,姚兴成,张江勇,等. 生物质炭的特性及其应用的研究进展[J]. 生态环境学报,2015, 24(4):716-723.
[16]朱灵峰,何怡雪,耿悦,等. 还原剂改性生物炭吸附亚甲基蓝的动力学[J]. 江苏农业科学, 2017,45(9):232-234.
[17]KASOZI G N, ZIMMERMAN A R, NKEDIKIZZA P, et al. Catechol andhumic acid sorption onto a range of laboratory produced black carbons (Biochars) [J]. Environmental Science and Technology, 2010, 44(16):6189-6195.
[18]陈红卫,张重路,王一山,等.生物质炭对重金属污染土壤中汞的赋存形态及运移分配的影响[J].江苏农业科学,2018,46(8):312-315.
[19]刘冲, 刘晓文, 吴文成, 等. 生物炭及炭基肥对油麦菜生长及吸收重金属的影响[J].中国环境科学, 2016, 36(10):3064-3070.
[20]王旭峰,郑立安,刘毛,等. 改性玉米芯生物炭对废水中铜和氨氮的吸附[J].工业水处理, 2017, 37(1): 37-41.
[21]尹微琴,孟莉蓉,郁彬琦,等. 垫料生物炭对土壤镉的钝化作用[J].江苏农业学报,2018,34(1):62-67.
[22]唐行灿,陈金林.生物炭对土壤理化和微生物性质影响研究进展[J]. 生态科学, 2018, 37(1): 192-199.
[23]ELMER W H, PIGNATELLO J J. Effect of Biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils [J]. Plant Disease, 2011, 95: 960-966.
[24]ZWART D C, KIM S H.Biochar amendment increases resistance to stem lesions caused by Phytophthora spp. in tree seedlings [J]. Hortscience A Publication of the American Society for Horticultural Science, 2012, 47(12): 1736-1740.
[25]JAISWAL A K, ELAD Y, GRABER E R, et al. Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration [J]. Soil Biology & Biochemistry, 2014, 69(1): 110-118.
[26]桑军强,王志农,李福志,等. 饮用水生物处理中微生物量和活性的测定方法[J]. 环境污染治理技术与设备, 2005, 6(8): 88-90.
[27]南宇航,朱子成,王学征,等. 甜瓜种质资源苗期对枯萎病和白粉病的抗性评价[J]. 中国蔬菜, 2016(1): 37-44.
[28]苏州科铭生物技术有限公司. 生化试剂盒:土壤系列 [EB/OL]. (2011-09-15)
[2019-02-22]. http://www.cominbio.com/a/shijihe/shenghuashiji/turangxilie/.
[29]任天宝,尹双耀,马孝琴,等. 几种化学物质对稻草秸秆酶解糖化的影响[J]. 农业环境科学学报, 2012, 31(1): 206-211.
[30]HAMELINCK C N, HOOIJDONK G V, FAAJJ A P. Ethanol from lignocellulosic biomass: techno-economic performance in short, middle and long term [J]. Biomass and Bioenergy, 2005, 28(4): 384-410.
[31]杨卓, 陈婧, 揣莹. 芦苇生物质炭的制备、表征及吸附性能[J]. 江苏农业科学, 2016, 44(11): 464-467.
[32]CUNNINGHAM C J, IVSHINA I B, LOZINSKY V I, et al. Bioremediation of diesel-contaminated soil by microorganismsimmobilised in polyvinyl alcohol [J]. International Biodeterioration & Biodegradation, 2004, 54(2/3):167-174.
[33]GHEORGHE C, MARCULESCU C, BADEA A, et al. Effect of pyrolysis conditions on biochar production from biomass[C]//PERLOVSKY L, DIONYSIOU D, ZADEH L, et al. Energy Problems and Environmental Engineering. Canary Islands, Spain: WSEAS Press, 2009: 239-241.
[34]KOLB S E, FERMANICH K J, DORNBUSH M E. Effect of charcoal quantity on microbial biomass and activity in temperate soils[J]. Soil Science Society of American Journal, 2009, 73(4): 1173-1181.
[35]KOLTON M, HAREL Y M, PASTERNAK Z, et al. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants [J]. Applied and Environment Microbiology, 2011, 77(14): 4924-4930.
[36]卜晓莉,薛建辉. 生物炭对土壤生境及植物生长影响的研究进展[J]. 生态环境学报, 2014, 23(3): 535-540.
[37]KNICKER H. How does fire affect the nature and stability of soil organic nitrogen and carbon: a review [J]. Biogeochemistry, 2007, 85(1): 91-118.
[38]袁金华,徐仁扣. 生物质炭的性质及其对土壤环境功能影响的研究进展[J]. 生态环境学报, 2011, 20(4): 779-785.
[39]迟建国,吕吉利,高永超,等. 生物炭固定化菌剂对含油海水中石油的去除[J]. 工业安全与环保, 2015,41(6):13-16,29.
[40]袁敏,刘晓冰,唐美珍,等. 生物炭固定菌强化人工湿地对低温污水中氮素去除的模拟研究[J]. 生态与农村环境学报, 2018, 34(5): 463-468.
[41]黄茜,蒋梦莹,王丽晓,等. 竹炭固定化微生物对水中壬基酚的降解效率[J]. 应用生态学报, 2018, 29(5): 1677-1685.
[42]戚鑫,陈晓明,肖诗琦,等. 生物炭固定化微生物对U、Cd污染土壤的原位钝化修复[J].农业环境科学学报, 2018, 37(8): 1683-1689.
[43]LIU L, CHEN P, SUN M X,et al. Effect of biochar amendment on PAH dissipation and indigenous degradation bacteria in contaminated soil [J]. Journal of Soils and Sediments, 2015, 15:313-322.
[44]陈思尹. 多环芳烃降解菌的筛选及生物炭固定化菌剂对土壤的修复[D].上海:上海师范大学, 2017:36-46.
[45]王潇敏,李恋卿,潘根兴,等. 胶冻样芽孢杆菌与生物质炭复配及对番茄产量和品质的影响[J]. 土壤, 2016, 48(3): 479-485.
[46]韩召强,陈效民,曲成闯,等. 生物质炭施用对潮土理化性状、酶活性及黄瓜产量的影响[J]. 水土保持学报, 2017, 31 (6): 272-278.
[47]GUO Y, LI L, WEI C, et al. Effect of nitrogen fertilizer on biomass amount and soil enzymes activity of desert grassland in Xinjiang [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(13): 249-256.
[48]郭天财,宋晓,马冬云,等. 施氮量对冬小麦根际土壤酶活性的影响[J]. 应用生态学报, 2008, 19(1): 110-114.
[49]NIE C, YANG X, NIAZI N K, et al. Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: A field study [J]. Chemosphere, 2018, 200:274-282.
[50]韩召强, 陈效民, 曲成闯, 等. 生物质炭对黄瓜连作土壤理化性状、酶活性及土壤质量的持续效应[J]. 植物营养与肥料学报, 2018, 24(5): 1227-1236.
[51]聂天宏, 韩学博, 王海龙, 等. 不同种类生物质炭对植烟土壤保育及烤烟生长和品质的影响[J]. 水土保持学报, 2018, 32(6): 346-351,358.
[52]尚艺婕, 张秀, 王海波, 等. 秸秆生物质炭对镉污染水稻土根际酶活性的影响[J]. 农业环境科学学报, 2016, 35(8): 1532-1540.

相似文献/References:

[1]吴雅杰,樊炳君,朱国兴,等.特基拉芽孢杆菌KC 121拮抗玉米镰刀菌的防病促生作用[J].江苏农业学报,2024,(02):233.[doi:doi:10.3969/j.issn.1000-4440.2024.02.005]
 WU Ya-jie,FAN Bing-jun,ZHU Guo-xing,et al.Disease prevention against corn Fusarium and growth promotion of Bacillus tequilensis KC 121[J].,2024,(06):233.[doi:doi:10.3969/j.issn.1000-4440.2024.02.005]

备注/Memo

备注/Memo:
收稿日期:2019-02-22 基金项目:江苏省农业科技自主创新基金项目[CX(18)3052];国家自然科学基金项目(31401779);泉州市高层次人才创新创业项目(2017Z034);福建省高校产学研合作项目(2019N5011) 作者简介:张猛(1982-),男,山东泰安人,博士,副研究员,研究方向为作物土传病害生物防治。(Tel)025-84390396;(E-mail)z320m320@163.com 通讯作者:余向阳,(E-mail)yu981190@hotmail.com
更新日期/Last Update: 2020-01-09