参考文献/References:
[1]DLOUHY A C, OUTTEN C E. The iron metallome in eukaryotic organisms[J]. Met Ions Life Sci, 2013,12:241-278.
[2]STEHLING O, LILL R. The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases[J/OL]. Cold Spring Harb Perspect Biol, 2013, 5: a011312
[2019-05-02]. https://cshperspectives.cshlp.org/content/5/8/a011312
[3]XUE Y, SCHMOLLINGER S, ATTAR N, et al. Endoplasmic reticulum-mitochondria junction is required for iron homeostasis[J]. J Biol Chem, 2017,292:13197-13204.
[4]MENEGHINI R. Iron homeostasis, oxidative stress, and DNA damage[J]. Free Radic Biol Med, 1997,23:783-792.
[5]BRAUGHLER J M, DUNCAN L A, CHASE R L. The involvement of iron in lipid peroxidation, Importance of ferric to ferrous ratios in initiation[J]. J Biol Chem, 1986,261:10282-10289.
[6]ZHANG C. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control[J]. Protein Cell, 2014,5:750-760.
[7]GOZZELINO R, AROSIO P. The importance of iron in pathophysiologic conditions[J]. Front Pharmacol, 2015,6:26.
[8]GOZZELINO R, AROSIO P. Iron homeostasis in health and disease[J]. Int J Mol Sci, 2016,17: 130.
[9]PHILPOTT C C. Iron uptake in fungi: a system for every source[J]. Biochimica et Biophysica Acta, 2006,1763:636-645.
[10]PHILPOTT C C, PROTCHENKO O. Response to iron deprivation in Saccharomyces cerevisiae[J]. Eukaryot Cell, 2008,7:20-27.
[11]RUTHERFORD J C, OJEDA L, BALK J, et al. Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron-sulfur protein biogenesis[J]. J Biol Chem, 2005,280:10135-10140.
[12]YAMAGUCHI-IWAI Y, DANCIS A, KLAUSNER R D. AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae[J]. The EMBO Journal, 1995,14:1231-1239.
[13]BABCOCK M, DE SILVA D, OAKS R, et al. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin[J]. Science, 1997,276:1709-1712.
[14]VAN LEEUWEN F, VAN STEENSEL B. Histone modifications: from genome-wide maps to functional insights[J]. Genome Biol, 2005,6:113.
[15]RANDO O J, CHANG H Y. Genome-wide views of chromatin structure[J]. Annu Rev Biochem,2009,78:245-271.
[16]TAO Y, WU Q, GUO X, et al. MBD5 regulates iron metabolism via methylation-independent genomic targeting of Fth1 through KAT2A in mice[J]. Br J Haematol, 2014,166:279-291.
[17]FREITAG M. Histone methylation by SET domain proteins in fungi[J]. Annu Rev Microbiol,2017,71:413-439.
[18]BLACK J C, VAN RECHEM C, WHETSTINE J R. Histone lysine methylation dynamics: establishment, regulation, and biological impact[J]. Mol Cell,2012,48:491-507.
[19]BRACHMANN C B, DAVIES A, COST G J, et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications[J]. Yeast, 1998,14:115-132.
[20]AZAD G K, SINGH V, GOLLA U, et al. Depletion of cellular iron by curcumin leads to alteration in histone acetylation and degradation of Sml1p in Saccharomyces cerevisiae[J]. PLoS ONE, 2013,8:e59003.
[21]JO W J, KIM J H, OH E, et al. Novel insights into iron metabolism by integrating deletome and transcriptome analysis in an iron deficiency model of the yeast Saccharomyces cerevisiae[J]. BMC Genomics,2009,10:130.