[1]刘瑾,李亚男,付婧怡.低浓度Pb下水稻幼苗各部位Pb及营养元素的积累机制[J].江苏农业学报,2019,(05):1130-1135.[doi:doi:10.3969/j.issn.1000-4440.2019.05.019]
 LIU Jin,LI Ya-nan,FU Jing-yi.Accumulation mechanism of Pb and nutrient elements in different parts of rice seedlings under low Pb concentration[J].,2019,(05):1130-1135.[doi:doi:10.3969/j.issn.1000-4440.2019.05.019]
点击复制

低浓度Pb下水稻幼苗各部位Pb及营养元素的积累机制()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年05期
页码:
1130-1135
栏目:
耕作栽培·资源环境
出版日期:
2019-10-31

文章信息/Info

Title:
Accumulation mechanism of Pb and nutrient elements in different parts of rice seedlings under low Pb concentration
作者:
刘瑾12李亚男1付婧怡12
(1.太原理工大学环境科学与工程学院,山西太原030024;2.广东省生态环境技术研究所,广东省农业环境污染综合治理重点实验室,广东广州510650)
Author(s):
LIU Jin12LI Ya-nan1FU Jing-yi12
(1.School of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China;2.Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China)
关键词:
Pb水稻幼苗积累叶绿素微量营养元素
Keywords:
Pbrice seedlingaccumulationchlorophyllmicronutrient
分类号:
S511
DOI:
doi:10.3969/j.issn.1000-4440.2019.05.019
文献标志码:
A
摘要:
近年来水稻中Pb含量超标现象日益严重。为了深入了解Pb对水稻幼苗的毒害过程,采用水培方法,研究不同浓度Pb(2.0 μmol/L、3.5 μmol/L、5.0 μmol/L)和不同处理时间(0 h、6 h、12 h、24 h、36 h、48 h、72 h)下水稻幼苗各部位对Pb的积累速率,以及Pb对水稻幼苗体内叶绿素和微量营养元素(Cu、Zn、Mn)含量的影响。结果表明,Pb在根部的积累速率随处理时间的延长而减少,而在茎、叶中的积累速率随处理时间的延长而增加。在Pb胁迫下,叶片中叶绿素含量呈现“低促高抑”的特征,即低浓度(2.0 μmol/L)的Pb促进叶绿素的合成,高浓度(5.0 μmol/L)的Pb抑制叶绿素的合成。各微量营养元素在水稻幼苗各部位的分布情况不同,Mn、Cu、Zn在各部位的含量顺序分别为:叶>茎>根、根>叶>茎、茎>叶>根,三者均和Pb呈拮抗关系,含量随Pb处理时间的延长而减少。
Abstract:
In recent years, the phenomenon of excessive level of Pb in rice has become more and more serious. In order to explore the toxic process of Pb on rice, the hydroponic method was used to study the accumulation rate of Pb in different parts of rice seedlings and the effect of Pb on the contents of chlorophyll and micronutrients (Cu, Zn, Mn) under the different concentrations of Pb (2.0 μmol/L, 3.5 μmol/L, 5.0 μmol/L) and different treatment time (0 h, 6 h, 12 h, 24 h, 36 h, 48 h, 72 h). The results showed that the accumulation rate of Pb in roots decreased with the prolongation of treatment time, while the accumulation rate of Pb in stems and leaves increased with the prolongation of treatment time. Pb showed a promoting effect on the content of chlorophyll at low concentrations and an inhibitory effect at high concentrations. Low concentration of Pb promoted the synthesis of chlorophyll, whereas high concentration of Pb inhibited the synthesis of chlorophyll. The distribution of micronutrients in different parts of rice seedlings was different. The contents of Mn, Cu, Zn in different parts of rice seedlings decreased in the order: leaf> stem > root, root >leaf > stem, stem > leaf > root, respectively, and they all showed an antagonistic relationship with the concentration of Pb. The contents of Mn, Cu, Zn decreased with the prolongation of treatment time.

参考文献/References:

[1]张娜,杨双,童非,等. 铅污染对不同生境芦苇体内抗氧化酶系统的影响[J].江苏农业学报,2018,34(2):333-339.
[2]谢团辉.不同蔬菜品种土壤Pb临界值研究[D].福州:福建农林大学,2012.
[3]程龙,杨可明,王晓峰,等.铅胁迫下玉米污染程度的ED-SCAtan快速判别方法[J].江苏农业科学,2018,46(12):238-241.
[4]杨牧青,康宏宇,刘源,等. 云南会泽某铅锌冶炼厂周边土壤 重金属污染特征与评价[J].山东农业科学,2017,49(4):72-77.
[5]POURRUT B, SHAHID M, DUMAT C, et al. Lead uptake, toxicity, and detoxification in plants[J]. Reviews of Environmental Contamination and Toxicology, 2011, 213: 113-136.
[6]STEFANOWICZ A M, STANEK M, WOCH M W, et al. The accumulation of elements in plants growing spontaneously on small heaps left by the historical Zn-Pb ore mining[J]. Environmental Science & Pollution Research, 2016, 23(7): 6524-6534.
[7]朱守晶,史文娟,揭雨成. 不同苎麻品种对土壤中镉、铅富集的差异[J].江苏农业学报,2018,34(2):320-326.
[8]LIU J, LI K, XU J, et al. Lead toxicity, uptake, and translocation in different rice cultivars[J]. Plant Science, 2003, 165(4): 793-802.
[9]FATEMITALAB R, ZARE M, KARDAR S. Assessment of cadmium, zinc and lead contamination in leaf and root of four various species[J]. International Journal of Environmental Science & Technology, 2016, 13(5): 1-6.
[10]童建华,田梅,陈小飞,等. 铅胁迫对水稻中铅和矿质元素含量的影响[J]. 湖南农业科学, 2009 (7): 60-63.
[11]KHAN F, HUSSAIN S, TANVEER M, et al. Coordinated effects of lead toxicity and nutrient deprivation on growth, oxidative status, and elemental composition of primed and non-primed rice seedlings[J]. Environmental Science & Pollution Research International, 2018,25(21):1-10.
[12]ASHRAF U, KANU A S, MO Z, et al. Lead toxicity in rice: effects, mechanisms, and mitigation strategies--a mini review[J]. Environmental Science & Pollution Research, 2015, 22(23): 18318-18332.
[13]ASHRAF U, HUSSAIN S, ANJUM S A, et al. Alterations in growth, oxidative damage, and metal uptake of five aromatic rice cultivars under lead toxicity[J]. Plant Physiology & Biochemistry, 2017, 115: 461-471.
[14]ASHRAF U, TANG X. Yield and quality responses, plant metabolism and metal distribution pattern in aromatic rice under Lead (Pb) toxicity[J]. Chemosphere, 2017, 176: 141-155.
[15]THAKUR S, SINGH L, ZULARISAM A W, et al. Lead induced oxidative stress and alteration in the activities of antioxidative enzymes in rice shoots[J]. Biologia Plantarum, 2017, 61(3): 595-598.
[16]CHEN Q, ZHANG X, LIU Y, et al. Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity;suppressed metal uptake and oxidative stress in rice seedlings[J]. Plant Growth Regulation, 2016, 81(2): 1-12.
[17]LEE K J, FENG Y Y, CHOI D H, et al. Lead accumulation and distribution in different rice cultivars[J]. Journal of Crop Science & Biotechnology, 2016, 19(4): 323-328.
[18]邹继颖,刘辉. Cr6+、Pb2+污染对水稻幼苗生长发育的影响[J]. 河南农业科学, 2014, 43(2): 31-34.
[19]LAI Y C, SYU C H, WANG P J, et al. Field experiment for determining lead accumulation in rice grains of different genotypes and correlation with iron oxides deposited on rhizosphere soil[J]. Science of the Total Environment, 2018, 610/611: 845-853.
[20]陈永华,张富运,吴晓芙,等. 改良剂对4种木本植物的铅锌耐性、亚细胞分布和化学形态的影响[J]. 环境科学, 2015, 36(10): 3852-3859.
[21]LI X, BU N, LI Y, et al. Growth, photosynthesis and antioxidant responses of endophyte infected and non-infected rice under lead stress conditions[J]. Journal of Hazardous Materials, 2012, 213/214: 55-61.
[22]李晓林. 铅、铬对茶树生长的影响及其在茶树体内的吸收累积特性研究[D]. 雅安: 四川农业大学, 2008.
[23]宋丽娜.铅胁迫对水稻生理生长的影响及水稻对铅的吸收积累特征研究[D].杭州: 浙江大学, 2007.
[24]刘建国,李坤权,张祖建,等. 水稻不同品种对铅吸收、分配的差异及机理[J]. 应用生态学报, 2004, 15(2):291-294.
[25]朱海江. 水稻对重金属铅的吸收积累特征及其农艺调控研究[D]. 杭州: 浙江大学, 2004.
[26]PIECHALAK A, TOMASZEWSKA B, BARALKIEWICZ D, et al. Accumulation and detoxification of lead ions in legumes[J]. Phytochemistry, 2002, 60(2):153-162.
[27]莫争,王春霞,陈琴,等. 重金属Cu、Pb、Zn、Cr、Cd在水稻植株中的富集和分布[J]. 环境化学, 2002, 21(2): 110-116.
[28]PATRA M, BHOWMIK N, BANDOPADHYAY B, et al. Comparison of mercury, Lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance[J]. Environmental & Experimental Botany, 2004, 52(3): 199-223.
[29]JAYASRI M A, SUTHINDHIRAN K. Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: its potential role in phytoremediation[J]. Applied Water Science, 2017, 7(3):1-7.
[30]饶玉春,郑婷婷,马伯军,等. 微量元素铁、锰、铜对水稻生长的影响及缺素防治[J]. 中国稻米, 2012, 18(4): 31-35.
[31]张郑伟,路运才. 锰素对水稻幼苗生长及生理效应的影响[J]. 中国农学通报, 2015, 31(18): 30-33.
[32]徐巡军,钱卫飞,黄春祥,等.水稻锌肥应用效果研究[J]. 现代农业科技, 2016(23): 13-15.
[33]AZOOZ M M, YOUSSEF M M, ALOMAIR M A. Comparative evaluation of zinc and lead and their synergistic effects on growth and some physiological responses of Hassawi Okra (Hibiscus esculentus) seedlings[J]. American Journal of Plant Physiology, 2011,6(6): 269-282.
[34]陶秀珍,唐常源,吴攀,等. 贵州煤矿区成熟期水稻中重金属的分布特征及风险评价[J]. 生态环境学报, 2017, 26(7):1216-1220.
[35]高盼. 下层土肥力对水稻生长特性及产量影响[D]. 哈尔滨: 东北农业大学, 2015.

备注/Memo

备注/Memo:
收稿日期:2018-11-15 基金项目:广东省科技计划项目(2017B030314092);山西省基础研究计划项目(2015021119) 作者简介:刘瑾(1993-),女,山西晋中人,硕士研究生,主要研究方向为水稻重金属的吸收与积累。(Tel)18718412649;(E-mail)715708956@qq.com 通讯作者:李亚男,(Tel)18636658360;(E-mail)yanan88191@163.com
更新日期/Last Update: 2019-11-11