[1]方向,王文才,金秀,等.土壤速效磷可见-近红外光谱检测方法[J].江苏农业学报,2019,(05):1112-1118.[doi:doi:10.3969/j.issn.1000-4440.2019.05.016]
 FANG Xiang,WANG Wen-cai,JIN Xiu,et al.Study on visible-near infrared spectroscopy for detection of available phosphorus in soil[J].,2019,(05):1112-1118.[doi:doi:10.3969/j.issn.1000-4440.2019.05.016]
点击复制

土壤速效磷可见-近红外光谱检测方法()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年05期
页码:
1112-1118
栏目:
耕作栽培·资源环境
出版日期:
2019-10-31

文章信息/Info

Title:
Study on visible-near infrared spectroscopy for detection of available phosphorus in soil
作者:
方向王文才金秀齐海军李绍稳
(安徽农业大学信息与计算机学院/农业部农业物联网技术集成与应用重点实验室,安徽合肥230036)
Author(s):
FANG XiangWANG Wen-caiJIN XiuQI Hai-junLI Shao-wen
(School of Information and Computer Science, Anhui Agricultural University/Key Laboratory of Technology Integration and Application in Agricultural Internet of Things, Ministry of Agriculture, Hefei 230036, China)
关键词:
可见-近红外光谱土壤速效磷最小二乘支持向量机
Keywords:
visible-near infrared spectroscopysoil available phosphorusleast squares support vector machine
分类号:
S153.6
DOI:
doi:10.3969/j.issn.1000-4440.2019.05.016
文献标志码:
A
摘要:
土壤速效磷是影响农作物生长发育的重要指标,利用可见-近红外光谱技术对速效磷含量定量估测可为精准施肥提供重要依据。采集农田土壤样本可见-近红外光谱数据,土壤样本共179个。在原始光谱基础上采用Savitzky-Golay卷积平滑,一阶微分,二阶微分,标准正态变换,多元散射校正以及去趋势校正等单一及其组合对原始光谱数据进行预处理,然后将可见-近红外光谱分为2个波段范围(400~850 nm和950~1 600 nm)并与全波段分别建立偏最小二乘回归和最小二乘支持向量机回归模型。结果表明Savitzky-Golay卷积平滑结合去趋势校正预处理效果最好,在此基础上,利用400~850 nm波段建立的最小二乘支持向量机模型取得了最佳效果,其模型验证集的决定系数为0.78,均方根误差为3.79 mg/kg,相对分析误差为2.17。因此,采用最小二乘支持向量机回归建模法建立土壤速效磷的光谱定量分析模型,可实现土壤速效磷的定量估测。
Abstract:
The soil available phosphorus is an important index affecting the growth and development of crops, and the quantitative estimation of the available phosphorus content by using visible-near infrared spectroscopy can provide an important basis for accurate fertilization. The visible-near infrared spectroscopy data of farmland soil samples were collected, and there were 179 soil samples. On the basis of the original spectrum, the Savitzky-Golay convolution smoothing, first derivative, second derivative, standard normal transformation, multiple scattering correction and dislodge tendency were used for preprocessing. Then the visible-near infrared spectroscopy was divided into two wavelength range (400-850 nm and 950-1 600 nm) and the partial least squares regression and least squares support vector machine regression models were established with the whole band. Results show that the pretreatment effect of Savitzky-Golay convolution smoothing combined with dislodge tendency was the best. On this basis, the least squares support vector machine model established in 400-850 nm achieved best results, the decision coefficient of validation set was 0.78, root mean square error was 3.79 mg/kg, relative analysis error was 2.17. Therefore, the spectral quantitative analysis model of soil available phosphorus was established by using the least-squares support vector machine regression model, and the quantitative estimation of soil available phosphorus was realized.

参考文献/References:

[1]SHEN J, YUAN L, ZHANG J, et al. Phosphorus dynamics: from soil to plant[J]. Plant Physiology, 2011, 156(3):997-1005.
[2]纪荣婷,阂炬,黄程鹏,等.光谱仪在作物施氮推荐中的应用研究进展——以GreenSeeker光谱仪为例[J].江苏农业科学,2017,45(2):9-13.
[3]姜雪芹,叶勤,林怡,等. 基于谐波分析和高光谱遥感的土壤含水量反演研究[J].光学学报, 2017, 37(10):292-302.
[4]李硕,汪善勤,张美琴. 基于可见-近红外光谱比较主成分回归、偏最小二乘回归和反向传播神经网络对土壤氮的预测研究[J]. 光学学报, 2012, 32(8):289-293.
[5]王文才,李绍稳,齐海军,等. 土壤速效磷含量成像和非成像光谱预测差异性分析[J].江苏农业学报,2018,34(4):811-817.
[6]李伟,张书慧,张倩,等. 近红外光谱法快速测定土壤碱解氮、速效磷和速效钾含量[J]. 农业工程学报, 2007, 23(1):55-59.
[7]HU G, HE D, SUDDUTH K A. Soil phosphorus and potassium estimation using visible-near infrared reflectance spectroscopy with direct orthogonal signal correction[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7):139-145.
[8]RAMOELO A , SKIDMORE A K , CHO M A , et al. Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 82:27-40.
[9]HU X Y. Application of visible/near-infrared spectra in modeling of soil total phosphorus[J]. Pedosphere, 2013, 23(4):417-421.
[10]薛利红,周鼎浩,李颖,等. 不同利用方式下土壤有机质和全磷的可见近红外高光谱反演[J].土壤学报,2014,51(5) : 993-1002
[11]YU X, LIU Q, WANG Y, et al. Evaluation of MLSR and PLSR for estimating soil element contents using visible/near-infrared spectroscopy in apple orchards on the Jiaodong peninsula[J].Catena, 2016, 137:340-349.
[12]何东健,陈煦,任嘉琛,等. 土壤速效磷含量近红外光谱田间快速测定方法[J].农业机械学报, 2015, 46(3):152-157.
[13]QI H, PAZ-KAGAN T, KARNIELI A, et al. Evaluating calibration methods for predicting soil available nutrients using hyperspectral VNIR data[J]. Soil & Tillage Research, 2018, 175:267-275.
[14]CHU X L, YUAN H F, LU W Z. Progress and application of spectral data pretreatment and wavelength selection methods in NIR analytical technique[J]. Progress in Chemistry, 2004, 16(4):528-542.
[15]SAVITZKY A, GOLAY M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 1964, 36(8):1627-1639.
[16]ASMUND RINNAN, BERG F V D, ENGELSEN S B. Review of the most common pre-processing techniques for near-infrared spectra[J]. Trac Trends in Analytical Chemistry, 2009, 28(10):1201-1222.
[17]GHOLIZADEH A A, BORUVKA L A, SABERIOON M M B, et al. Comparing different data preprocessing methods for monitoring soil heavy metals based on soil spectral features [J]. Soil and Water Research, 2015, 10(4): 218-27.
[18]ISAKSSON T , TORMOD N. The effect of Multiplicative scatter correction (MSC) and linearity improvement in NIR spectroscopy[J]. Applied Spectroscopy, 1988, 42(7):1273-1284.
[19]李毛毛,郑喜群,任健,等. 近红外光谱法快速检测甜菜糖度的模型优化[J].食品安全质量检测学报, 2015,6(8):3026-3029.
[20]ACKERSON J P, MORGAN C L S, GE Y. Penetrometer-mounted VisNIR spectroscopy: application of EPO-PLS to in situ, VisNIR spectra[J]. Geoderma, 2017, 286:131-138.
[21]SHAO Y, ZHAO C, BAO Y, et al. Quantification of nitrogen status in rice by least squares support vector machines and reflectance spectroscopy[J]. Food & Bioprocess Technology, 2012, 5(1):100-107.
[22]KENNARD R W, STONE L A. Computer aided design of experiments[J]. Technometrics, 1969, 11(1):137-148.
[23]YU X, LIU Q, WANG Y, et al. Evaluation of MLSR and PLSR for estimating soil element contents using visible/near-infrared spectroscopy in apple orchards on the Jiaodong peninsula[J]. Catena, 2016, 137:340-349.
[24]CHANG C W. Near infrared reflectance spectroscopy-Principal components regression analyses of soil properties[J]. Soil Science Society of America Journal, 2001, 65(2):480-490.
[25]BAYER A, BACHMANN M, MLLER A, et al. A comparison of feature-based MLR and PLS regression techniques for the prediction of three soil constituents in a degraded south african ecosystem[J]. Applied & Environmental Soil Science, 2012, 2012(3):495-506.
[26]ROSSEL R A V, BEHRENS T, GUERRERO C, et al. Using data mining to model and interpret soil diffuse reflectance spectra.[J]. Geoderma, 2010, 158(1/2):46-54.
[27]彭杰,张杨珠,周清,等. 土壤理化特性与土壤光谱特征关系的研究进展[J]. 土壤通报, 2009, 40(5):1204-1208.
[28]JI W, ROSSEL R A V, SHI Z. Accounting for the effects of water and the environment on proximally sensed vis-NIR soil spectra and their calibrations[J]. European Journal of Soil Science, 2015, 66(3):555-565.
[29]BO S, RAPHAELA V R, ABDULMOUNEM M, et al. Visible and near infrared spectroscopy in soil science.[J]. Advances in Agronomy, 2010, 107(107):163-215.

备注/Memo

备注/Memo:
收稿日期:2018-11-19 基金项目:农业部“948”项目(2015-Z44、2016-X34) 作者简介:方向(1995-),男,安徽舒城人, 硕士研究生,主要从事土壤速效养分高光谱检测研究。(E-mail)2928676905@qq.com 通讯作者:李绍稳,(E-mail)shwli@ahau.edu.cn
更新日期/Last Update: 2019-11-11