参考文献/References:
[1]PETKAU A. Active oxygen and medicine. Introduction: free radical involvement in physiological and biochemical processes.[J]. Canadian Journal of Physiology & Pharmacology, 1982, 60(11):1327-1329.
[2]朱涵毅, 陈益军, 劳佳丽,等. 外源NO对镉胁迫下水稻幼苗抗氧化系统和微量元素积累的影响[J]. 生态学报, 2013, 33(2):603-609.
[3]APEL K, HIRT H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55(1): 373-399.
[4]MITTLER R. Oxidative stress, antioxidants and stress tolerance[J].Trends in Plant Science, 2002,7(9):405-410.
[5]王国骄, 王嘉宇, 马殿荣, 等. 不同耐冷性杂草稻和栽培稻抗氧化系统对冷水胁迫的响应[J]. 中国农业科学, 2015, 48(8):1660-1668.
[6]CIRIDARAKUMAR S, MADHUSUDHAN K V, SREENIVASULU N, et al. Stress responses in two genotypes of mulberry (Morusalba L.) under NaCl salinity[J]. Indian J Exp Biol,2000, 38: 192-195.
[7]张爱君. 砷中毒对抗氧化酶系统的影响[J]. 中国地方病防治杂志, 2014(1): 21-24.
[8]段昌群, 何湘藩. 重金属复合污染对蚕豆性状影响的模糊聚类与性状代间分化的摄动[J]. 环境科学学报, 1996, 16(4):450-460.
[9]樊香绒, 尹黎燕, 李伟,等. 中国莲(Nelumbo nucifera)幼苗抗氧化系统对砷胁迫的响应[J]. 植物科学学报, 2013, 31(6):570-575.
[10]MALBOOBI M L, LEFEBVRE D D. A phosphate-starvation inducible β-glucosidase gene (psr. 3.2) isolated from Arabidopsis thaliana is a member of a distinct subfamily of the BGA family[J]. Plant Mol Biol, 1997, 34: 57-68.
[11]BARIOLA P A, HOWARD C J, TAYLOR C B, et al. The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation[J]. The Plant Journal, 1994, 6(5):13.
[12]CIERESZKO I, HENRIK J, LESZEK A K. Interactive effects of phosphate deficiency, sucrose and light/dark conditions on gene expression of UDP-glucose pyrophosphorylase in Arabidopsis[J]. J Plant Physiol, 2005, 162: 343-353.
[13]于姣妲, 夏丽丹, 殷丹阳,等. 磷素对杉木幼苗耐铝性的影响机制[J]. 林业科学, 2018, 54(5):36-47.
[14]张皓. 重金属镉胁迫下氮磷对江蓠体内主要抗氧化酶活性的影响[J]. 环境监控与预警, 2012, 4(6):46-49.
[15]张晓璟, 刘吉振, 徐卫红,等. 磷对不同辣椒品种镉积累、化学形态及生理特性的影响[J]. 环境科学, 2011, 32(4):1171-1176.
[16]ANAWAR H M, RENGEL Z, DAMON P,et al. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants[J]. Environmental Pollution, 2018, 233:1003-1012.
[17]赵蓉, 刘云根, 侯磊,等. 砷污染高原湖滨湿地沉积物对磷酸盐的吸附能力及影响因素探究[J]. 环境污染与防治, 2018, 40(8):10-14.
[18]朱秀玉, 王东. Typha×glauca Godr. 香蒲属(香蒲科)中国新记录杂种及其形态特征[J]. 水生生物学报, 2013, 37(1):29-33.
[19]DUMAN F, UREY E, KOCA F D. Temporal variation of heavy metal accumulation and translocation characteristics of narrow-leavedTypha (Typha angustifolia L.)[J]. Environmental Science & Pollution Research, 2015, 22(22):17886-17896.
[20]REDONDOGMEZ S. Bioaccumulation of heavy metals in Spartina[J]. Functional Plant Biology Fpb, 2013,40(8/9):913-921.
[21]彭艳, 李洋, 杨广笑, 等. 铝胁迫对不同小麦SOD、CAT、POD活性和MDA含量的影响[J]. 生物技术, 2006, 16(3):38-42.
[22]K&INODOT R H M, DILLIOGLUGIL M O, TUGAY M,et al. Effects of Vitamins E, A and D on MDA, GSH, NO levels and SOD activities in 5/6 nephrectomized rats[J]. American Journal of Nephrology, 2005, 25(5):441-446.
[23]米艳华, 黎其万, 刘大会, 等. 砷对三七幼苗的毒害效应及临界值研究[J]. 环境科学与技术, 2015(7):10-16.
[24]CHOUDHURY S, PANDA S K. Induction of oxidative stress and ultrastructural changes in moss Taxithelium ne palense (Schwaegr.) Broth. under lead and arsenic hytotoxicity[J]. Current Science, 2004, 87: 342-348.
[25]PANDA S K, CHOUDHURY S. Changes in nitrate reductase activity and oxidative stress response in the moss Polvtri chum commune subjected to chromium, copper and zine phytotoxicity[J].Brazilian Journal of Plant Physiology,2005, 17: 191-197.
[26]何雨沩. 低温胁迫下草莓NADPH氧化酶在ROS形成中的作用[D]. 雅安:四川农业大学, 2015..
[27]韩金龙,李慧,蔺经,等. 核黄素对盐胁迫下杜梨叶片抗氧化系统的影响[J]. 江苏农业学报, 2015,31(4):893-898.
[28]饶丽莎, 许珊珊, 黄田盛,等. 不同逆境胁迫下杉木Cu/Zn-SOD基因表达分析[J]. 森林与环境学报, 2018, 38(1):7-12.
[29]CHIRS B,MARC V H,DIRK I.Superoxide dismutase and stress tolerance[J].Annual Review of Plant Physiology and Plant Molecular Biology,1992,42(1): 43-83.
[30]WANG X, ZHANG H, GAO Y,et al. Characterization of Cu/Zn-SOD enzyme activities and gene expression in soybean under low nitrogen stress[J]. Journal of the Science of Food & Agriculture, 2016, 96(8):2692-2697.
[31]PAL R S, AGRAWAL P K, BHATT J C. Molecular approach towards the understanding of defensive systems against oxidative stress in plant: a critical review[J]. International Journal of Pharmaceutical Sciences Review and Research, 2013, 22(2): 131-138
[32]丁继军, 刘柿良, 李丽. 外源AsA、GSH对Cd胁迫下石竹幼苗生长的影响[J]. 应用生态学报, 2014, 25(2):419-426.
[33]刘会杰, 李胜, 马绍英, 等. H2O2胁迫下豌豆初生根及抗氧化酶系统对外源Ca2+的响应[J]. 草业学报, 2014, 23(6):189-197.
[34]覃勇荣, 汤丰瑜, 严海杰, 等. 重金属胁迫对任豆种子萌发及幼苗抗氧化酶活性的影响[J]. 种子, 2017(10):31-36.
[35]侯立刚, 陈温福, 马巍, 等. 低温胁迫下不同磷营养对水稻叶片质膜透性及抗氧化酶活性的影响[J]. 华北农学报, 2012, 27(1):118-123.
[36]丁继军, 潘远智, 刘柿良,等. 土壤重金属镉胁迫对石竹幼苗生长的影响及其机理[J]. 草业学报, 2013, 22(6):77-85.
[37]侯立刚, 陈温福, 马巍, 等. 低温胁迫下不同磷营养对水稻叶片质膜透性及抗氧化酶活性的影响[J]. 华北农学报, 2012, 27(1):118-123.
[38]WANG L H, DUAN G L. Effect of external and internal phos phate status on arsenic toxicity and accumulation in rice seedlings[J]. J Environ SciChina, 2009, 21(3):346-351.
[39]耿春女,朱永官,罗启仕.水稻基因型(94D-64)中磷对砷解毒生理机理的研究[J].农业环境科学学报,2007,26(4):1302-1306.
[40]耿志席,刘小虎,李莲芳,等.磷肥施用对土壤中砷生物有效性的影响[J].农业环境科学学报,2009,28(11):2338-2342.
[41]张广莉,宋光煜,赵红霞.磷影响下根际无机砷的形态分布及其对水稻生长的影响[J].土壤学报,2002,39(1):23-28.
[42]HOSSAIN M B, JAHIRUDDIN M, LOEPPERT R H, et al. The effects of iron plaque and phosphorus on yield and arsenic accumula tion in rice[J]. Plant Soil, 2009, 317(1/2):167-176.
[43]PERYEA F J. Phosphate starter fertilizer temporarily enhances soil arsenic uptake by apple trees grown under field conditions[J]. Hort Sci, 1998, 33(5): 826-829.
[44]FITZ W J, WENZEL W W. Arsenic transformations in the soil rhizosphere-plant system: Fundamentals and potential applica tion to phytoremediation[J]. J Biotechnol, 2002, 99 (3): 259-278.
[45]连娟, 郭再华, 贺立源. 砷胁迫下磷用量对不同磷效率水稻苗生长、磷和砷吸收的影响[J]. 中国水稻科学, 2013, 27(3):273-279.