[1]王津,韩榕.DNA甲基转移酶赋予拟南芥盐胁迫耐受性[J].江苏农业学报,2019,(05):1028-1031.[doi:doi:10.3969/j.issn.1000-4440.2019.05.004]
 WANG Jin,HAN Rong.DNA methyltransferases confer salt stress tolerance in Arabidopsis thaliana[J].,2019,(05):1028-1031.[doi:doi:10.3969/j.issn.1000-4440.2019.05.004]
点击复制

DNA甲基转移酶赋予拟南芥盐胁迫耐受性()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年05期
页码:
1028-1031
栏目:
遗传育种·生理生化
出版日期:
2019-10-31

文章信息/Info

Title:
DNA methyltransferases confer salt stress tolerance in Arabidopsis thaliana
作者:
王津1韩榕2
(1.山西师范大学生命科学学院,山西临汾041004;2.植物分子与环境胁迫响应山西省高等学校重点实验室,山西临汾041004)
Author(s):
WANG Jin1HAN Rong2
(1.College of Life Science, Shanxi Normal University, Linfen 041004, China; 2. Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Linfen 041004, China)
关键词:
DNA甲基转移酶盐胁迫耐受性拟南芥
Keywords:
DNA methyltransferase salt stress tolerance Arabidopsis thaliana
分类号:
S311
DOI:
doi:10.3969/j.issn.1000-4440.2019.05.004
文献标志码:
A
摘要:
为了探究DNA甲基化修饰在植物响应盐胁迫过程中的作用,对DNA甲基转移酶的突变体在盐胁迫下的表型进行观察,发现drm1drm2cmt3三重突变体相较于野生型对盐胁迫更加敏感,而drm1drm2双重突变体和cmt3单突变体相较于野生型对盐胁迫的应答没有明显差异。定量PCR结果表明纤维素合成酶ATCSLA1和ATCSLA10在野生型中受盐胁迫诱导表达,而这种诱导表达在三重突变体中明显减弱。以上结果表明,DNA甲基转移酶可能间接促进纤维素合成酶的表达进而调控纤维素合成的水平,最终赋予拟南芥盐胁迫的耐受性。
Abstract:
In order to explore the function of DNA methylation in the process of plant response to salt stress, the phenotype of DNA methyltransferase mutants was observed under salt stress. It was found that drm1drm2cmt3 triple mutant was more sensitive to salt stress when compared with wild-type, while the drm1drm2 double mutant and cmt3 single mutant showed no significant difference. Quantitative PCR results showed that cellulose synthase ATCSLA1 and ATCSLA10 were induced by salt stress in wild-type, but the induced expression was weakened visibly in the triple mutant. The above results indicate that DNA methyltransferase may indirectly up-regulate the expression of cellulose synthase, thus regulate the level of cellulose synthesis, and finally confer plant salt stress tolerance.

参考文献/References:

[1]赵东晓,董亚茹,杜建勋,等. 盐碱胁迫对三个品种桑树种子萌发的影响[J]. 山东农业科学,2017,49(7):49-55.
[2]顾闽峰,王乃顶,王军,等.盐胁迫对不同藜麦品种发芽率及幼苗生长的影响[J].江苏农业科学,2017,45(22):77-80.
[3]HASEGAWA P M,BRESSAN R A,ZHU J K,et al. Plant cellular and molecular responses to high salinity[J].Annual Review of Plant Physiology and Plant Molecular Biology,2000,51:463-499.
[4]MUNNS R.Comparative physiology of salt and water stress[J].Plant,Cell & Environment,2002,25(2):239-250.
[5]ZHU J K. Salt and drought stress signal transduction in plants[J].Annual Review of Plant Biology,2002,53:247-273.
[6]周丽霞,曹红星,刘艳菊. 海水胁迫对椰子幼苗生理特性的影响[J]. 南方农业学报 ,2018,49(10):2013-2019.
[7]MUNNS R,TESTER M.Mechanisms of salinity tolerance[J].Annual Review of Plant Biology,2008,59:651-681.
[8]SAHU P P,PANDEY G,SHARMA N,et al.Epigenetic mechanisms of plant stress responses and adaptation[J].Plant Cell Reports,2013,32(8):1151-1159.
[9]COKUS S J,FENG S,ZHANG X,et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning[J].Nature,2008,452(7184):215-219.
[10]KINOSHITA T,MIURA A,CHOI Y,et al. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation[J].Science,2004,303(5657):521-523.
[11]ZHANG X,JACOBSEN S E. Genetic analyses of DNA methyltransferases in Arabidopsis thaliana[J].Cold Spring Harbor Symposia on Quantitative Biology,2006,71:439-447.
[12]LINDROTH A M,CAO X,JACKSON J P,et al.Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation[J]. Science,2001,292(5524):2077-2080.
[13]CAO X,JACOBSEN S E. Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing[J]. Current Biology,2002,12(13):1138-1144.
[14]CAO X,JACOBSEN S E. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99 (Suppl 4):16491-16498.
[15]HAAG J R,PIKAARD C S. Multisubunit RNA polymerases IV and V:purveyors of non-coding RNA for plant gene silencing[J].Nature Reviews.Molecular Cell Biology,2011,12(8):483-492.
[16]LAW J A,JACOBSEN S E. Establishing,maintaining and modifying DNA methylation patterns in plants and animals[J].Nature Reviews Genetics,2010,11(3):204-220.
[17]HE X J,CHEN T,ZHU J K. Regulation and function of DNA methylation in plants and animals[J].Cell Research,2011,21(3):442-465.
[18]FERREIRA L J,AZEVEDO V,MAROCO J,et al. Salt tolerant and sensitive rice varieties display differential methylome flexibility under salt stress[J]. PLoS ONE, 2015,10(5):e0124060.
[19]WANG M,QIN L,XIE C,et al.Induced and constitutive DNA methylation in a salinity-tolerant wheat introgression line[J].Plant & Cell Physiology,2014,55(7):1354-1365.
[20]POPOVA O V,DINH H Q,AUFSATZ W,et al.The RdDM pathway is required for basal heat tolerance in Arabidopsis[J]. Molecular Plant,2013,6(2):396-410.
[21]XU R,WANG Y,ZHENG H,et al. Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis[J]. Journal of Experimental Botany,2015,66(19):5997-6008.
[22]ENDLER A,KESTEN C,SCHNEIDER R,et al.A mechanism for sustained cellulose synthesis during salt stress[J].Cell,2015,162(6):1353-1364.

备注/Memo

备注/Memo:
收稿日期:2018-12-12 基金项目:国家自然科学基金项目(30671061) ; 山西省自然科学基金项目(2014011028-5) 作者简介:王津(1989-),女,河北衡水人,硕士研究生,研究方向为植物生理学。(E-mail) jinwang2008@126.com 通讯作者:韩榕,(E-mail) hhwrsl@163.com
更新日期/Last Update: 2019-11-11