[1]邢东兴,王明军,陈玲侠,等.桃树遥感辨识的最佳时相与方法[J].江苏农业学报,2019,(04):919-926.[doi:doi:10.3969/j.issn.1000-4440.2019.04.024]
 XING Dong xing,WANG Ming jun,CHEN Ling xia,et al.Optimal phase and method for remote sensing identification of peach trees[J].,2019,(04):919-926.[doi:doi:10.3969/j.issn.1000-4440.2019.04.024]
点击复制

桃树遥感辨识的最佳时相与方法()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年04期
页码:
919-926
栏目:
园艺
出版日期:
2019-08-31

文章信息/Info

Title:
Optimal phase and method for remote sensing identification of peach trees
作者:
邢东兴1王明军2陈玲侠1杨波1焦俏1张亚宁1
(1.咸阳师范学院资源环境学院,陕西咸阳712000;2.咸阳师范学院物理与电子工程学院,陕西咸阳712000)
Author(s):
XING Dongxing1WANG Mingjun2CHEN Lingxia1YANG Bo1JIAO Qiao1ZHANG Yaning1
(1.College of Resources and Environment, Xianyang Normal University, Xianyang 712000, China;2.College of Physics and Electronic Engineering, Xianyang Normal University, Xianyang 712000, China)
关键词:
桃树遥感影像树种辨识最佳时相光谱指数
Keywords:
peach treeremote sensing imageidentification of fruit tree speciesthe best phasespectral index
分类号:
S127
DOI:
doi:10.3969/j.issn.1000-4440.2019.04.024
文献标志码:
A
摘要:
利用35景卫星影像,探寻桃树遥感辨识的最佳时相与方法。首先对各景影像分别进行预处理,随后利用6类探试性辨识方法(即地物反射光谱比较、波段差分或比值分析、光谱指数求算与分析、光谱指数变化追踪、影像复合与辨识方法协同分析)对探试组影像进行辨识分析,并从中选出3种较佳的辨识方法,最后利用优选的3种辨识方法对验证组影像进行辨识验证。结果表明:(1)在10月初的影像中,桃树具有较高的NDVI×ρNIR值,利用其阈值可以较高精度识别桃树(桃树分类正确率可达948%,总体分类精度可达9133%);(2)在4月初(桃树盛花期)的影像中,利用NDVI、1/ρGREEN-1/ρRED与ρBLUE+ρGREEN+ρRED的三重阈值也可以较高精度识别桃树(桃树分类正确率可达852%,总体分类精度可达8013%);(3)在上述两期数据融合、所用辨识方法协同的情形下,可进一步提高桃树的辨识精度(桃树分类正确率可提高到9653%,总体分类精度可提高到9337%);(4)桃树遥感辨识的最佳时相为10月初,较佳时相为4月初。
Abstract:
Using 35 satellite remote sensing images the optimal phase and method for remote sensing identification of peach trees were explored. Firstly, each scene image was preprocessed separately. Secondly, the three better identification methods were selected from the six kinds of tentative identification methods (comparison of reflectance spectra of ground objects, bands difference or ratio analysis, spectral indices calculation and analysis, spectral index change tracing, image fusion and identification method collaborative analysis) which were used to identify and analyze the images of test group. Finally, the images of verification group were verified by using the three better identification methods. The results showed the peach trees had higher values of NDVI×ρNIR in the early October, and the peach trees could be identified with higher accuracy by using threshold of the vegetation index (the correct rate of identifying peach tree species could reach 948%, the overall classification accuracy could reach 9133%). In the early April (peach trees were in full bloom), the peach trees were also identified with higher accuracy by using the triple thresholds of NDVI、1/ρGREEN1/ρRED and ρBLUE+ρGREEN+ρRED (the correct rate of identifying peach tree species could reach 852%, the overall classification accuracy could reach 8013%). The identification precision of peach trees could be further improved with the fusion of the images in the two periods and the collaboration of two identification methods (the correct rate of identifying peach tree species was increased to 9653%, the overall classification accuracy was increased to 9337%). The better phase for identifying the peach trees is early April, and the best phase for identifing peach trees is early October.

参考文献/References:

[1]邢东兴.基于高光谱数据的果树理化性状信息提取研究[D].西安:西北农林科技大学,2009.
[2]BADWHAR G D. Use of LANDSAT derived profile features for spring small grains classification[J]. International Journal Remote Sensing, 1993,7: 65-82.
[3]BOYD D S, RIPPLE W L. Potential vegetation Indices for determining global forest cover[J]. International Journal Remote Sensing, 1997,18(6):1395-1401.
[4]MARTIN M E, NEWMAN J D A,CONGALTON R C. Determining forest species composition using high spectral resolution remote sensing data[J].Remote Sense Environ,1998,65:249-254.
[5]ATKINSON P M, EMERY D R. Exploring the relation between spatial structure and wavelength: Implications for sampling reflectance in the field[J]. International Journal Remote Sensing,1999,20(13):2663-2678.
[6]DUNGAN J. Spatial prediction of vegetation quantities using ground and image data[J]. Int J Remote Sensing,1998, 19(2): 267-285.
[7]ROBERTS D A, GARDNER M, CHURCH R. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models[J].Remote Sense Environ,1997,65:267-279.
[8]宫鹏,浦瑞良,郁斌.不同季相针叶林树种高光谱数据识别分析[J].遥感学报,1998,2(3):211-217.
[9]ZHANG B, ZHAO Y C, TONG Q X. Hyperspectral remote sensing applied on precision agriculture in China[R].Beijing: ICAST, Information Technology of Agriculture,2001.
[10]王长耀,刘正军,颜春燕. 成像光谱数据特征选择及小麦品种识别实验研究[J].遥感学报,2006,10(2):249-255.
[11]邹尚辉. 植被资源调查中最佳时相遥感图象的选择研究[J].植物学报,1985,27(5):525-531.
[12]王新辉,沈掌泉,王 珂. 基于面向对象的香榧资源分布遥感调查研究[J].科技通报,2009,25(2):160-166.
[13]王岽,吴见. 农作物种类高光谱遥感识别研究[J].地理与地理信息科学,2015,31(2):29-33.
[14]黄启厅, 曾志康, 谢国雪,等. 基于高时空分辨率遥感数据协同的作物种植结构调查[J]. 南方农业学报,2017,48(3):552-560.
[15]胡永森,王力,施开分,等. 基于分区分层随机抽样的棉花种植面积遥感监测方法研究[J].河南农业科学,2016,45(10):155-160.
[16]田光辉,李海亮,陈汇林. 基于物候特征参数的橡树树种种植信息遥感提取研究[J].中国农学通报,2013,29(28):46-52.
[17]董芳,赵庚星,王凌. 基于实测光谱混合像元分解的苹果园地遥感提取技术[J].应用生态学报,2012,23(12):3361-3368.
[18]邢东兴,常庆瑞. 基于光谱分析的果树树种辨识研究[J].光谱学与光谱分析, 2009,29(7):1937-1940.
[19]邢东兴,常庆瑞. 基于花期果树冠层光谱反射率的果树树种辨识研究[J].红外与毫米波学报,2009,28(3):207-211.
[20]岳俊,王振锡,冯振峰. 基于光谱与纹理特征的南疆盆地果树树种遥感识别研究[J].新疆农业大学学报,2015,38(4):326-333.
[21]李雪,钟仕全,王蕾,等. 基于HJ卫星遥感数据的林果光谱特征分析[J].新疆农业科学,2011,48(11):1967-1973.
[22]杨辽. 基于多光谱数据的库尔勒香梨种植面积提取研究[D].乌鲁木齐:新疆大学,2015.
[23]苗荣慧,黄锋华,杨华,等. 基于空谱一体化的农田高光谱图像分类[J].江苏农业学报,2018,34(4):818-824.
[24]郑曼迪,熊黑钢,乔娟峰,等. 基于综合光谱指数的不同程度人类干扰下土壤有机质含量预测[J].江苏农业学报,2018,34(5):1048-1056.
[25]孟令奎,李晓香,张文.植被覆盖区 VIIRS 与 MODIS 遥感指数的相关性[J].江苏农业学报,2018,34(3): 570-577.
[26]邓书斌. ENVI遥感图像处理方法[M].北京:科学出版社,2010: 378-385.

相似文献/References:

[1]钟怡琪,李家国,韩杰,等.基于哨兵影像与多特征优选的溧阳市上兴镇水稻识别[J].江苏农业学报,2023,(08):1688.[doi:doi:10.3969/j.issn.1000-4440.2023.08.008]
 ZHONG Yi-qi,LI Jia-guo,HAN Jie,et al.Identification of rice in Shangxing Town, Liyang City based on Sentinel image and multi-feature optimization[J].,2023,(04):1688.[doi:doi:10.3969/j.issn.1000-4440.2023.08.008]

备注/Memo

备注/Memo:
收稿日期:2018-11-21 基金项目:国家自然科学基金项目(61771385);陕西省优势学科建设项目(060103) 作者简介:邢东兴(1969-),男,陕西礼泉人,博士,工程师,主要从事农业遥感与精准农业研究。(Tel)15592109530;(E-mail)3036310771@qq.com
更新日期/Last Update: 2019-08-31