[1]罗青青,黄铁成,陈蜀江,等.基于光谱反射率的塞威氏苹果虫害等级定量化测评[J].江苏农业学报,2019,(04):798-803.[doi:doi:10.3969/j.issn.1000-4440.2019.04.007]
 LUO Qing qing,HUANG Tie cheng,CHEN Shu jiang,et al.Quantitative evaluation on pest damage levels of Malus sieversii based on spectral reflectance[J].,2019,(04):798-803.[doi:doi:10.3969/j.issn.1000-4440.2019.04.007]
点击复制

基于光谱反射率的塞威氏苹果虫害等级定量化测评()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年04期
页码:
798-803
栏目:
植物保护
出版日期:
2019-08-31

文章信息/Info

Title:
Quantitative evaluation on pest damage levels of Malus sieversii based on spectral reflectance
作者:
罗青青12黄铁成123陈蜀江12陈孟禹4贾翔12朱选5来风兵12武红敢6赵文霞7李春蕾7姚艳霞7
(1.新疆师范大学地理科学与旅游学院,新疆维吾尔自治区乌鲁木齐830054;2.乌鲁木齐空间遥感应用研究所,新疆维吾尔自治区乌鲁木齐830054;3.北京林业大学精准林业重点实验室,北京100083;4.苏州科技大学外国语学院,江苏苏州215000;5.莫纳什大学,墨尔本3800;6.中国林业科学研究院资源信息研究所,北京100091;7.国家林业局森林保护学重点实验室,中国林业科学研究院森林生态环境与保护研究所,北京100091)
Author(s):
LUO Qingqing12HUANG Tiecheng123CHEN Shujiang12CHEN Mengyu4JIA Xiang12ZHU Xuan5LAI Fengbing12WU Honggan6ZHAO Wenxia7LI Chunlei7YAO Yanxia7
(1.School of Geography and Tourism, Xinjiang Normal University, Urumqi 830054, China; 2.Urumqi Institute of Space Remote Sensing Applications, Urumqi 830054, China; 3.Key Laboratory of Precision Forestry,Beijing Forestry University, Beijing 100083,China; 4.School of Foreign Languages,Suzhou University of Science and Technology, Suzhou 215000,China; 5.Monash University, Melbourne 3800, Australia; 6.Reacher Institute of Rescource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China; 7.Key Laboratory of Forest Protection of the State Forestry Administration Research, Institute of Forest Ecology Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China)
关键词:
小吉丁虫虫害等级塞威氏苹果反射率光谱定量化测评
Keywords:
Agrilusmali Matsumurapest damage levelMalus sieversiispectral reflectancequantitative evaluation
分类号:
S432
DOI:
doi:10.3969/j.issn.1000-4440.2019.04.007
文献标志码:
A
摘要:
利用光谱技术分析了小吉丁虫危害不同等级的塞威氏苹果的反射光谱特征,并用光谱数据针对塞威氏苹果树的虫害进行定量化分析。用新疆维吾尔自治区伊犁哈萨克自治州巩留县野果林实测60条不同虫害等级的塞威氏苹果高光谱数据,分析健康、轻度、中度、重度4个虫害等级光谱反射率及一阶微分光谱特征,建立了红边参数,并在6个检验参数的基础上,构建了虫害等级的检测模型,并用验证组数据对模型进行精度检验。结果表明:(1)健康状态下的塞威氏苹果光谱反射率较受虫害塞威氏苹果光谱反射率高,受害程度越严重,反射率越低。(2)受虫害塞威氏苹果光谱特征表现为“绿峰”红移;“红边位置”蓝移,尤其是受重度虫害的极为明显;近红外反射峰向短波方向移动。(3)红边比值植被指数 (RERVI)、红遍斜率(RES)、红边差值植被指数(REDVI)、红边面积(REA)这4个参数与虫害等级呈极显著相关关系,红边归一化植被指数(RENDVI)及红边位置(REP)与虫害等级相关性不强。(4)以RERVI、RES、REDVI、REA这4个参数为自变量构成的多元回归模型的检测精度与准确度均为07以上。因此,通过相关参数及模型可以有效检测小吉丁虫害等级。
Abstract:
The spectral reflectance characteristics of Malus sieversii were analyzed by spectral techniques under different levels of damage by Agrilusmali Matsumura, and the spectral data were used to conduct a quantitative analysis on the insect pests of Malus sieversii trees. The 60 Malus sieversii hyperspectral data with different pest damage levels in the wild fruit forest of Gongliu County, Ili Kazakh Autonomous Prefecture, Xinjiang Uygur Autonomous Region were used to analyze the spectral reflectance and firstorder derivative spectral characteristics of insect pests that were divided into four levelshealthy, mild, moderate and severe, and create red edge parameters. A detection model of pest damage levels was constructed on the basis of six test parameters, and the accuracy of model was tested by the data of verification group. The results showed that the spectral reflectance of Malus sieversii under healthy condition was higher than that of Malus sieversii damaged by pests, and the more serious the damage was, the lower the reflectivity was. The spectral characteristics of Malus sieversii destroyed by pests were that “green peak” position showed red shift, and “red edge position” showed blue shift, especially for the severity level of pests; the nearinfrared reflection peaks moved towards the short waves. The red edge ratio vegetation index (RERVI), red edge slope (RES), red edgedifference vegetation index (REDVI) and red edge area (REA) were significantly correlated with the pest damage levels, but the correlation between red edge normalized difference vegetation index (RENDVI) and red edge position (REP) and pest levels was not strong. The detection precision and accuracy of multiple regression model composed of RERVI, RES, REDVI and REA as independent variables were above 07. Therefore, the pest damage levels of Agrilusmali Matsumura can be effectively detected through the establishment of relevant parameters and models.

参考文献/References:

[1]喻闻,李宁辉.伊犁地区野果林恢复的非市场价值评估[J].农业经济问题,2007(S1):180-186.
[2]宋益学.新疆野苹果的管理现状和保护措施[J].新疆林业,2006(6):34-35.
[3]李飞飞,崔大方,廖文波.中国新疆野苹果[Malus sieversii(Ldb.)Roem.]种群地理分布格局及其遗传关系研究[J].干旱区地理,2011,34(6):926-932.
[4]李利平,海鹰,安尼瓦尔·买买提,等.新疆伊犁地区野果林的群落特征及保护[J].干旱区研究,2011,28(1):60-66.
[5]安兴林,周英.新疆伊犁区域野果林资源保护及合理开发利用[J]. 江苏林业科技, 2009,36(4):35-37.
[6]刘忠权,陈卫民,许正,等.新疆天山西部野苹果林分布与苹果小吉丁虫危害现状研究[J].北方园艺,2014(17):121-124.
[7]王春晓,赵健桐,隋建中,等.新疆发生苹果小吉丁虫[J].新疆农业科学,1995(5):225-226.
[8]刘华,臧润国,丁易.天山西部新疆野苹果种群特征[J].林业科学,2010,46(11):1-7.
[9]羊海军,崔大方,许正.中国天山野果林种子植物组成及资源状况分析[J].植物资源与环境学报,2003,12(2):39-45.
[10]张风娟,陈凤新,徐东生,等.植物组织结构与抗虫性的关系(综述)[J].河北科技师范学院学报,2006,20(2):71-76.
[11]梅闯,闫鹏,艾沙江·买买提,等.新疆野苹果(Malus sieversii)受苹果小吉丁虫危害程度与树皮厚度、径阶的关系[J].中国农业科技导报,2016,18(4):24-30.
[12]林卉,梁亮,张连蓬,等.基于支持向量机回归算法的小麦叶面积指数高光谱遥感反演[J].农业工程学报,2013,29(11):139-146.
[13]冷小梅,谭峰,才巧玲,等. 基于拉曼光谱的稻瘟病诊断[J].江苏农业学报,2018,34(2):276-280.
[14]许章华,刘健,余坤勇,等.松毛虫危害马尾松光谱特征分析与等级检测[J].光谱学与光谱分析,2013,33(2):428-433.
[15]邢东兴,常庆瑞.基于光谱反射率的果树虫害级别定量化测评——以红富士苹果树黄叶虫害、红蜘蛛虫害为例[J].西北农林科技大学学报(自然科学版),2009,37(11):143-148.
[16]范泽华,张楠楠,喻彩丽,等.基于近红外光谱的骏枣病虫害与风沙损伤检测[J].江苏农业科学,2018,46(2):154-157
[17]林文鹏,李厚增,黄敬峰,等.上海城市植被光谱反射特征分析[J].光谱学与光谱分析,2010,30(11):3111-3114.
[18]邹佳秀,贾翔,黄铁成,等.天山北坡野苹果混生植被花期冠层光谱特征研究[J].云南大学学报(自然科学版),2018,40(4):726-733.

备注/Memo

备注/Memo:
收稿日期:2019-03-15 基金项目:国家重点研发计划项目(2016YFC0501503) 作者简介:罗青青(1994-),女,山东招远人,硕士研究生,研究方向为资源环境遥感,(E-mail)415225595@qq.com 通讯作者:陈蜀江,(E-mail)2358223957@qq.com
更新日期/Last Update: 2019-08-31