[1]邹禹,刘园园,钱宝云,等.水稻高盐胁迫下的酵母双杂交文库构建及OsRPK1胞内互作蛋白质的筛选[J].江苏农业学报,2019,(04):753-763.[doi:doi:10.3969/j.issn.1000-4440.2019.04.001]
 ZOU Yu,LIU Yuan yuan,QIAN Bao yun,et al.Construction of yeast twohybrid cDNA library of rice under high salinity stress and screening of intracellular interacting protein of OsRPK1[J].,2019,(04):753-763.[doi:doi:10.3969/j.issn.1000-4440.2019.04.001]
点击复制

水稻高盐胁迫下的酵母双杂交文库构建及OsRPK1胞内互作蛋白质的筛选()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年04期
页码:
753-763
栏目:
遗传育种·生理生化
出版日期:
2019-08-31

文章信息/Info

Title:
Construction of yeast twohybrid cDNA library of rice under high salinity stress and screening of intracellular interacting protein of OsRPK1
作者:
邹禹1刘园园2钱宝云1占新春1郑乐娅1张炜2张培江1
(1.安徽省农业科学院水稻研究所,安徽合肥210031;2.南京农业大学生命科学学院,江苏南京210095)
Author(s):
ZOU Yu1LIU Yuanyuan2QIAN Baoyun1ZHAN Xinchun1ZHENG Leya1ZHANG Wei2ZHANG Peijiang1
(1. Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 210031, China;2.College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China)
关键词:
水稻OsRPK1高盐胁迫酵母双杂交cDNA文库
Keywords:
riceOsRPK1high salinity stressyeast two hybrid cDNA library
分类号:
Q943.2;S511
DOI:
doi:10.3969/j.issn.1000-4440.2019.04.001
文献标志码:
A
摘要:
为了挖掘水稻OsRPK1胞内互作蛋白质,阐明OsRPK1参与高盐胁迫的分子机制,本研究利用SMART技术,构建水稻高盐胁迫下根尖的酵母双杂交文库。PCR扩增获得OsRPK1基因编码胞内区域的碱基序列,构建诱饵表达载体(pGBKT7OsRPK1CD),检测诱饵表达载体在酵母中的毒性和自激活活性,筛选OsRPK1胞内互作蛋白,进一步分析高盐胁迫下候选基因的表达模式。结果表明,构建的cDNA文库库容量为1.11×107 CFU,文库重组率为96%,文库插入片段多态性较好。成功构建了诱饵表达载体(pGBKT7OsRPK1CD),经检测诱饵表达载体无毒性,无自激活活性。诱饵表达载体与cDNA文库进行双杂交筛选,经测序和比对分析获得了11个重要的候选基因,检测候选基因在高盐处理下的表达情况,其中8个候选基因受高盐诱导表达,2个候选基因受高盐胁迫抑制表达,1个候选基因受高盐胁迫瞬时诱导表达后表达量又受到显著抑制。
Abstract:
In order to explore the intracellular interacting protein of OsRPK1 in rice, and describe the molecular mechanism of OsRPK1 involved in highsalinity stress, a yeast twohybrid cDNA library of rice root tip under highsalinity stress was constructed by switching mechanism at 5′ end of the RNA transcript (SMART) technique. The base sequence of OsRPK1 gene encoding intracellular region was obtained by PCR amplification, and the bait expression vector (pGBKT7OsRPK1CD) was constructed. Then the toxicity and selfactivation activity of pGBKT7OsRPK1CD in yeast were detected. The intracellular interacting proteins of OsRPK1 were screened and the expression patterns of candidate genes were analyzed under highsalinity stress. The results showed that the capacity of the cDNA library was 1.11×107 CFU, the recombinant rate was 96%, and the polymorphism of the cDNA fragments was good. The bait vector pGBKT7OsRPK1CD was constructed successfully and tested to be no toxicity and no selfactivation. The cDNA library was screened by bait vector, and 11 important candidate genes were found by sequencing and alignment analysis. Under highsalinity stress, eight candidate genes were upregulated. Inversely, two candidate genes were downregulated. Besides, one candidate gene was upregulated transiently, and then the expression was inhibited significantly.

参考文献/References:

[1]赵可夫,李法曾,张福锁.中国盐生植物[M].2版.北京:科学出版社,2013.
[2]宁丽华,何晓兰,张大勇. 大豆耐盐相关基因 GmNcl1 功能标记的开发及验证[J].江苏农业学报,2017,33(6):1227-1234.
[3]夏秀忠, 张宗琼, 杨行海, 等. 广西地方稻种资源核心种质的耐盐性鉴定评价[J]. 南方农业学报,2017,48(6):979-984.
[4]蔡继鸿,徐鹏,张香桂,等.盐胁迫下陆地棉耐盐相关 WRKY 基因的表达分析[J].江苏农业科学,2018,46(18):28-32.
[5]ZHU J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53(1): 247-273.
[6]HANIN M, EBEL C, NGOM M, et al. New insights on plant salt tolerance mechanisms and their potential use for breeding[J]. Frontiers in Plant Science, 2016, 7: 1787.
[7]QUAN R, LIN H, MENDOZA I, et al. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress[J]. The Plant Cell, 2007, 19(4): 1415-1431.
[8]QUINTERO F J, MARTINEZATIENZA J, VILLALTA I, et al. Activation of the plasma membrane Na/H antiporter SaltOverlySensitive 1 (SOS1) by phosphorylation of an autoinhibitory Cterminal domain[J]. Proceedings of the National Academy of Sciences, 2011, 108(6): 2611-2616.
[9]YU L, NIE J, CAO C, et al. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana[J]. New Phytologist, 2010, 188(3): 762-773.
[10]查笑君,马伯军,潘建伟,等. 植物富亮氨酸重复类受体蛋白激酶的研究进展[J]. 浙江师范大学学报(自然科学版), 2010, 33(1): 7-12.
[11]OUYANG S Q, LIU Y F, LIU P, et al. Receptorlike kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants[J]. The Plant Journal, 2010, 62(2): 316-329.
[12]OSAKABE Y, MARUYAMA K, SEKI M, et al. Leucinerich repeat receptorlike kinase1 is a key membranebound regulator of abscisic acid early signaling in Arabidopsis[J]. The Plant Cell, 2005, 17(4): 1105-1119.
[13]OSAKABE Y, MIZUNO S, TANAKA H, et al. Overproduction of the membranebound receptorlike protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis[J]. Journal of Biological Chemistry, 2010, 285(12): 9190-9201.
[14]KUMAR D, KUMAR R, BAEK D, et al. Arabidopsis thaliana RECEPTOR DEAD KINASE1 functions as a positive regulator in plant responses to ABA[J]. Molecular Plant, 2017, 10(2): 223-243.
[15]KANG J, LI J, GAO S, et al. Overexpression of the leucinerich receptorlike kinase gene LRK2 increases drought tolerance and tiller number in rice[J]. Plant Biotechnology Journal, 2017, 15(9): 1175-1185.
[16]WU F, SHENG P, TAN J, et al. Plasma membrane receptorlike kinase leaf panicle 2 acts downstream of the drought and salt tolerance transcription factor to regulate drought sensitivity in rice[J]. Journal of Experimental Botany, 2015, 66(1): 271-281.
[17]WANG J, LI C, YAO X, et al. The Antarctic moss leucinerich repeat receptorlike kinase (PnLRRRLK2) functions in salinity and drought stress adaptation[J]. Polar Biology, 2018, 41(2): 353-364.
[18]DIEVART A, PERIN C, HIRSCH J, et al. The phenome analysis of mutant alleles in leucinerich repeat receptorlike kinase genes in rice reveals new potential targets for stress tolerant cereals[J]. Plant Science, 2016, 242: 240-249.
[19]CHENG Y, QI Y, ZHU Q, et al. New changes in the plasmamembraneassociated proteome of rice roots under salt stress[J]. Proteomics, 2009, 9(11): 3100-3114.
[20]ZOU Y, LIU X, WANG Q, et al. OsRPK1, a novel leucinerich repeat receptorlike kinase, negatively regulates polar auxin transport and root development in rice[J]. Biochimica et Biophysica Acta (BBA)General Subjects, 2014, 1840(6): 1676-1685.
[21]JAIN M, NIJHAWAN A, TYAGI A K, et al. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative realtime PCR[J]. Biochemical and Biophysical Research Communications, 2006, 345(2): 646-651.
[22]SCHMITTGEN T D, LIVAK K J. Analyzing realtime PCR data by the comparative CT method[J]. Nature Protocols, 2008, 3(6): 1101-1108.
[23]ZHANG J, LIU H, SUN J, et al. Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth[J]. PLoS ONE, 2012, 7(1): e30355.
[24]曹英萍,石金磊,李钟,等. 水稻OsFAD2、OsFAD6的克隆及其家族成员对非生物胁迫的响应[J]. 遗传, 2010, 32(8): 839-847.
[25]WONG H L, SAKAMOTO T, KAWASAKI T, et al. Downregulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice[J]. Plant Physiology, 2004, 135(3): 1447-1456.
[26]YUAN J, CHEN D, REN Y, et al. Characteristic and expression analysis of a metallothionein gene, OsMT2b, downregulated by cytokinin suggests functions in root development and seed embryo germination of rice[J]. Plant Physiology, 2008, 146(4): 1637-1650.
[27]鄂玉联,谭兰兰,安梦洁,等. 高分子化合物对盐渍化棉田土壤团聚体组成及棉花产量的影响[J]. 南方农业学报,2017,48(11):1989-1993
[28]申玉香,李洪山,封功能,等.油菜苗期耐盐性差异与耐盐指标选择[J].江苏农业科学,2018,46(24):85-87.
[29]黄芳,徐珍珍,孟珊,等. 盐胁迫下棉花 LTR反转座子的转录激活及在耐盐相关基因发掘中的应用[J].江苏农业学报, 2017,33(6):1220-1226
[30]黄相玲,林妃妃,张明月,等. 盐胁迫对小叶榄仁幼苗生长和渗透调节物质含量的影响[J]. 南方农业学报, 2018,49(7):1364-1369.
[31]TORII K. Receptor kinase activation and signal transduction in plants: an emerging picture [J]. Current Opinion in Plant Biology, 2000, 3(5): 361-367.
[32]WANG X, CHORY J. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane[J]. Science, 2006, 313(5790): 1118-1122.
[33]JAILLAIS Y, HOTHORN M, BELKHADIR Y, et al. Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor[J]. Genes & Development, 2011, 25(3): 232-237.
[34]代勋,龚明. 植物金属硫蛋白在植物抗逆性中的作用[J]. 宁夏师范学院学报, 2011, 32(3): 47-51.
[35]刘佳. 水稻铜诱导金属硫蛋白OsMT2c的功能研究[D]. 南京: 南京农业大学, 2015.
[36]李芳,滕建晒,陈宣钦. 14-3-3蛋白参与植物应答非生物胁迫的研究进展[J]. 植物科学学报, 2018, 36(3):459-469.
[37]CHEN F, LI Q, SUN L, et al. The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress[J]. DNA Research, 2006, 13(2): 53-63.
[38]CHEN Y, ZHOU X, CHANG S, et al. Calciumdependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice[J]. Biochemical and Biophysical Research Communications, 2017, 493(4): 1450-1456.
[39]ZHOU H, LIN H, CHEN S, et al. Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins[J]. The Plant Cell, 2014, 26(3): 1166-1182.
[40]KLEIN M, PERFUSBARBEOCH L, FRELET A, et al. The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use[J]. The Plant Journal, 2003, 33(1): 119-129.
[41]KLEIN M, GEISLER M, SUH S J, et al. Disruption of AtMRP4, a guard cell plasma membrane ABCCtype ABC transporter, leads to deregulation of stomatal opening and increased drought susceptibility[J]. The Plant Journal, 2004, 39(2): 219-236.
[42]吴延朋,李洪旺,侯丽霞,等. ABC转运体位于H2S上游参与盐胁迫诱导的拟南芥气孔关闭[J]. 植物生理学报, 2014,50(4): 401-406.

相似文献/References:

[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
 WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
 WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
 YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
 LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(04):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
 WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(04):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
 SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(04):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
 ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(04):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
 YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(04):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
 LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(04):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
 GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(04):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]

备注/Memo

备注/Memo:
收稿日期:2018-10-29 基金项目:国家自然科学基金项目(31701409);安徽省重点研究和开发计划项目(1804a07020111、1804h07020156);安徽省自然科学基金项目(1408085MKL63);安徽省农业科学院院长青年创新基金(17B0101) 作者简介:邹禹(1986-),男,安徽安庆人,博士,助理研究员,主要从事水稻基因功能解析及分子设计育种研究。(Tel)055162160151;(E-mail)zouyu0308@126.com。刘园园为共同第一作者。 通讯作者:张培江,(E-mail)peijiangzhang@126.com;张炜,(E-mail)wzhang@njau.edu.cn
更新日期/Last Update: 2019-08-31