参考文献/References:
[1]赵可夫,李法曾,张福锁.中国盐生植物[M].2版.北京:科学出版社,2013.
[2]宁丽华,何晓兰,张大勇. 大豆耐盐相关基因 GmNcl1 功能标记的开发及验证[J].江苏农业学报,2017,33(6):1227-1234.
[3]夏秀忠, 张宗琼, 杨行海, 等. 广西地方稻种资源核心种质的耐盐性鉴定评价[J]. 南方农业学报,2017,48(6):979-984.
[4]蔡继鸿,徐鹏,张香桂,等.盐胁迫下陆地棉耐盐相关 WRKY 基因的表达分析[J].江苏农业科学,2018,46(18):28-32.
[5]ZHU J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53(1): 247-273.
[6]HANIN M, EBEL C, NGOM M, et al. New insights on plant salt tolerance mechanisms and their potential use for breeding[J]. Frontiers in Plant Science, 2016, 7: 1787.
[7]QUAN R, LIN H, MENDOZA I, et al. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress[J]. The Plant Cell, 2007, 19(4): 1415-1431.
[8]QUINTERO F J, MARTINEZATIENZA J, VILLALTA I, et al. Activation of the plasma membrane Na/H antiporter SaltOverlySensitive 1 (SOS1) by phosphorylation of an autoinhibitory Cterminal domain[J]. Proceedings of the National Academy of Sciences, 2011, 108(6): 2611-2616.
[9]YU L, NIE J, CAO C, et al. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana[J]. New Phytologist, 2010, 188(3): 762-773.
[10]查笑君,马伯军,潘建伟,等. 植物富亮氨酸重复类受体蛋白激酶的研究进展[J]. 浙江师范大学学报(自然科学版), 2010, 33(1): 7-12.
[11]OUYANG S Q, LIU Y F, LIU P, et al. Receptorlike kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants[J]. The Plant Journal, 2010, 62(2): 316-329.
[12]OSAKABE Y, MARUYAMA K, SEKI M, et al. Leucinerich repeat receptorlike kinase1 is a key membranebound regulator of abscisic acid early signaling in Arabidopsis[J]. The Plant Cell, 2005, 17(4): 1105-1119.
[13]OSAKABE Y, MIZUNO S, TANAKA H, et al. Overproduction of the membranebound receptorlike protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis[J]. Journal of Biological Chemistry, 2010, 285(12): 9190-9201.
[14]KUMAR D, KUMAR R, BAEK D, et al. Arabidopsis thaliana RECEPTOR DEAD KINASE1 functions as a positive regulator in plant responses to ABA[J]. Molecular Plant, 2017, 10(2): 223-243.
[15]KANG J, LI J, GAO S, et al. Overexpression of the leucinerich receptorlike kinase gene LRK2 increases drought tolerance and tiller number in rice[J]. Plant Biotechnology Journal, 2017, 15(9): 1175-1185.
[16]WU F, SHENG P, TAN J, et al. Plasma membrane receptorlike kinase leaf panicle 2 acts downstream of the drought and salt tolerance transcription factor to regulate drought sensitivity in rice[J]. Journal of Experimental Botany, 2015, 66(1): 271-281.
[17]WANG J, LI C, YAO X, et al. The Antarctic moss leucinerich repeat receptorlike kinase (PnLRRRLK2) functions in salinity and drought stress adaptation[J]. Polar Biology, 2018, 41(2): 353-364.
[18]DIEVART A, PERIN C, HIRSCH J, et al. The phenome analysis of mutant alleles in leucinerich repeat receptorlike kinase genes in rice reveals new potential targets for stress tolerant cereals[J]. Plant Science, 2016, 242: 240-249.
[19]CHENG Y, QI Y, ZHU Q, et al. New changes in the plasmamembraneassociated proteome of rice roots under salt stress[J]. Proteomics, 2009, 9(11): 3100-3114.
[20]ZOU Y, LIU X, WANG Q, et al. OsRPK1, a novel leucinerich repeat receptorlike kinase, negatively regulates polar auxin transport and root development in rice[J]. Biochimica et Biophysica Acta (BBA)General Subjects, 2014, 1840(6): 1676-1685.
[21]JAIN M, NIJHAWAN A, TYAGI A K, et al. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative realtime PCR[J]. Biochemical and Biophysical Research Communications, 2006, 345(2): 646-651.
[22]SCHMITTGEN T D, LIVAK K J. Analyzing realtime PCR data by the comparative CT method[J]. Nature Protocols, 2008, 3(6): 1101-1108.
[23]ZHANG J, LIU H, SUN J, et al. Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth[J]. PLoS ONE, 2012, 7(1): e30355.
[24]曹英萍,石金磊,李钟,等. 水稻OsFAD2、OsFAD6的克隆及其家族成员对非生物胁迫的响应[J]. 遗传, 2010, 32(8): 839-847.
[25]WONG H L, SAKAMOTO T, KAWASAKI T, et al. Downregulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice[J]. Plant Physiology, 2004, 135(3): 1447-1456.
[26]YUAN J, CHEN D, REN Y, et al. Characteristic and expression analysis of a metallothionein gene, OsMT2b, downregulated by cytokinin suggests functions in root development and seed embryo germination of rice[J]. Plant Physiology, 2008, 146(4): 1637-1650.
[27]鄂玉联,谭兰兰,安梦洁,等. 高分子化合物对盐渍化棉田土壤团聚体组成及棉花产量的影响[J]. 南方农业学报,2017,48(11):1989-1993
[28]申玉香,李洪山,封功能,等.油菜苗期耐盐性差异与耐盐指标选择[J].江苏农业科学,2018,46(24):85-87.
[29]黄芳,徐珍珍,孟珊,等. 盐胁迫下棉花 LTR反转座子的转录激活及在耐盐相关基因发掘中的应用[J].江苏农业学报, 2017,33(6):1220-1226
[30]黄相玲,林妃妃,张明月,等. 盐胁迫对小叶榄仁幼苗生长和渗透调节物质含量的影响[J]. 南方农业学报, 2018,49(7):1364-1369.
[31]TORII K. Receptor kinase activation and signal transduction in plants: an emerging picture [J]. Current Opinion in Plant Biology, 2000, 3(5): 361-367.
[32]WANG X, CHORY J. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane[J]. Science, 2006, 313(5790): 1118-1122.
[33]JAILLAIS Y, HOTHORN M, BELKHADIR Y, et al. Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor[J]. Genes & Development, 2011, 25(3): 232-237.
[34]代勋,龚明. 植物金属硫蛋白在植物抗逆性中的作用[J]. 宁夏师范学院学报, 2011, 32(3): 47-51.
[35]刘佳. 水稻铜诱导金属硫蛋白OsMT2c的功能研究[D]. 南京: 南京农业大学, 2015.
[36]李芳,滕建晒,陈宣钦. 14-3-3蛋白参与植物应答非生物胁迫的研究进展[J]. 植物科学学报, 2018, 36(3):459-469.
[37]CHEN F, LI Q, SUN L, et al. The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress[J]. DNA Research, 2006, 13(2): 53-63.
[38]CHEN Y, ZHOU X, CHANG S, et al. Calciumdependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice[J]. Biochemical and Biophysical Research Communications, 2017, 493(4): 1450-1456.
[39]ZHOU H, LIN H, CHEN S, et al. Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins[J]. The Plant Cell, 2014, 26(3): 1166-1182.
[40]KLEIN M, PERFUSBARBEOCH L, FRELET A, et al. The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use[J]. The Plant Journal, 2003, 33(1): 119-129.
[41]KLEIN M, GEISLER M, SUH S J, et al. Disruption of AtMRP4, a guard cell plasma membrane ABCCtype ABC transporter, leads to deregulation of stomatal opening and increased drought susceptibility[J]. The Plant Journal, 2004, 39(2): 219-236.
[42]吴延朋,李洪旺,侯丽霞,等. ABC转运体位于H2S上游参与盐胁迫诱导的拟南芥气孔关闭[J]. 植物生理学报, 2014,50(4): 401-406.
相似文献/References:
[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(04):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(04):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(04):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(04):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(04):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(04):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(04):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]