[1]宋杨,刘红弟,王海波,等.越橘原花青素合成相关基因VcLAR和VcANR的克隆和功能鉴定[J].江苏农业学报,2019,(03):682-688.[doi:doi:10.3969/j.issn.1000-4440.2019.03.025]
 SONG Yang,LIU Hong-di,WANG Hai-bo,et al.Molecular cloning and functional identification of proanthocyanidin synthesis related genes VcLAR and VcANR of blueberry[J].,2019,(03):682-688.[doi:doi:10.3969/j.issn.1000-4440.2019.03.025]
点击复制

越橘原花青素合成相关基因VcLAR和VcANR的克隆和功能鉴定()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年03期
页码:
682-688
栏目:
园艺
出版日期:
2019-06-30

文章信息/Info

Title:
Molecular cloning and functional identification of proanthocyanidin synthesis related genes VcLAR and VcANR of blueberry
作者:
宋杨刘红弟王海波张红军刘凤之
(中国农业科学院果树研究所/农业部园艺作物种质资源利用重点实验室/辽宁省落叶果树矿质营养与肥料高效利用重点实验室,辽宁兴城125100)
Author(s):
SONG YangLIU Hong-diWANG Hai-boZHANG Hong-junLIU Feng-zhi
(Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture/Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province, Xingcheng 125100, China)
关键词:
越橘VcLAR基因VcANR基因水杨酸茉莉酸甲酯原花青素
Keywords:
blueberryVcLARVcANRsalicylic acidmethyl jasmonateproanthocyanidin
分类号:
S663.9
DOI:
doi:10.3969/j.issn.1000-4440.2019.03.025
文献标志码:
A
摘要:
本研究以越橘(Vaccinium corymbosum Duke)为试验材料,克隆原花青素合成基因VcLAR和VcANR,分析其表达模式及其对水杨酸和茉莉酸甲酯的响应,鉴定其在原花青素合成过程中的作用。结果表明,成功获得了越橘VcLAR(GenBank登录号为MH321470)和VcANR(GenBank登录号为MH321471)基因。VcLAR和VcANR在根、茎、幼叶、花以及不同发育阶段果实中均可表达,但相对表达量存在差异,在绿果中的相对表达量最高。在不同发育阶段果实中,原花青素含量在绿果中最高,在蓝果中最低。水杨酸处理可促进VcLAR和VcANR基因的表达,茉莉酸甲酯处理可抑制VcLAR和VcANR基因的表达。在转VcANR基因拟南芥株系中,原花青素的含量显著高于野生型。在转VcLAR基因拟南芥株系中,原花青素含量与野生型相比无明显变化。由此推测,VcLAR和VcANR在越橘果实原花青素积累过程中发挥重要作用,并受水杨酸和茉莉酸甲酯的调控。
Abstract:
In this study, using Vaccinium corymbosum Duke as experimental material, proanthocyanidin synthesis genes VcLAR and VcANR were cloned, the expression patterns and their responses to salicylic acid (SA) and methyl jasmonate (MeJA) were analyzed, and their roles in proanthocyanidin synthesis were identified. The results showed that VcLAR (GenBank accession No. MH321470) and VcANR (MH321471) were cloned from blueberry. The quantitative real time PCR (qRTPCR) analysis results indicated that VcLAR and VcANR expressed in roots, stems, young leaves, flowers and different development stages of fruits. However, the expression levels were different, and the highest expression level was in green fruits. The content of proanthocyanidin was highest in green fruits and lowest in blue fruits during different development stages of fruits. The expression of VcLAR and VcANR was induced by SA treatment and suppressed by MeJA treatment. The content of proanthocyanidins in transgenic VcANR Arabidopsis was significantly higher than that in wild type. There was no significant change in proanthocyanidin content between wild type and transgenic VcLAR Arabidopsis lines. It is speculated that VcLAR and VcANR play an important role in the accumulation of proanthocyanidins in blueberry fruits and are regulated by SA and MeJA.

参考文献/References:

[1]BASU A, RHONE M, LYONS T J. Berries: emerging impact on cardiovascular health[J]. Nutrition Reviews, 2010, 68(3): 168-177.
[2]GORDILLO G, FANG H, KHANNA S, et al. Oral administration of blueberry inhibits angiogenic tumor growth and enhances survival of mice with endothelial cell neoplasm[J]. Antioxidants & Redox Signaling, 2009, 11(1): 47-58.
[3]张宇,张丙秀,魏媛媛,等. 土壤 pH 值对蓝莓叶片生理生化的影响[J]. 江苏农业科学,2017,45(13):107-109.
[4]BOGS J, DOWNEY M O, HARVEY J S, et al. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves[J]. Plant Physiology, 2005, 139(2): 652-663.
[5]PAOLOCCI F, ROBBINS M P, MADEO L, et al. Ectopic expression of a basic helixloophelix gene transactivates parallel pathways of proanthocyanidin biosynthesis. structure, expression analysis, and genetic control of leucoanthocyanidin 4reductase and anthocyanidin reductase genes in Lotus corniculatus[J]. Plant Physiology, 2007, 143(1): 504-516.
[6]LI X, SUN H, PEI J, et al. De novo sequencing and comparative analysis of the blueberry transcriptome to discover putative genes related to antioxidants[J]. Gene, 2012, 511(1): 54-61.
[7]SUN H, LIU Y, GAI Y, et al. De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation[J]. BMC Genomics, 2015, 16(1): 652.
[8]LI L, ZHANG H, LIU Z, et al. Comparative transcriptome sequencing and de novo analysis of Vaccinium corymbosum during fruit and color development[J]. BMC Plant Biology, 2016, 16(1): 223.
[9]ZIFKIN M, JIN A, OZGA J A, et al. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism[J]. Plant Physiology, 2012, 158(1): 200-224.
[10]SONG Y, LIU H D, ZHOU Q, et al. Highthroughput sequencing of highbush blueberry transcriptome and analysis of basic helixloophelix transcription factors[J]. Journal of Integrative Agriculture, 2017, 16(3): 591-604.
[11]PRIOR R L, LAZARUS S A, CAO G, et al. Identification of procyanidins and anthocyanins in blueberries and cranberries (Vaccinium spp.) using highperformance liquid chromatography/mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2001, 49(3): 1270-1276.
[12]李亚东,孙海悦,陈丽. 我国蓝莓产业发展报告[J]. 中国果树,2016(5):1-10.
[13]曹森,王瑞,赵成飞,等. 采前喷施哈茨木霉菌对采后蓝莓贮藏品质及生物活性的影响[J].江苏农业学报,2017,33(2):424-431.
[14]NETO C C. Cranberry and blueberry: evidence for protective effects against cancer and vascular diseases[J]. Molecular Nutrition & Food Research, 2007, 51(6): 652-664.
[15]RENDEIRO C, VAUZOUR D, KEAN R J, et al. Blueberry supplementation induces spatial memory improvements and regionspecific regulation of hippocampal BDNF mRNA expression in young rats[J]. Psychopharmacology, 2012, 223(3): 319-330.
[16]尉莹莹,梁晨,赵洪海,等. 华东地区蓝莓采后病害病原鉴定及其多样性分析[J]. 山东农业科学, 2017,49(7):112-115.
[17]QI T, SONG S, REN Q, et al. The JasmonateZIMdomain proteins interact with the WDRepeat/bHLH/MYB complexes to regulate Jasmonatemediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana[J]. The Plant Cell, 2011, 23: 1795-1814.
[18]NARAYAN M S, THIMMARAJU R, BHAGYALAKSHMI N. Interplay of growth regulators during solidstate and liquidstate batch cultivation of anthocyanin producing cell line of Daucus carota[J]. Process Biochemistry, 2005, 40(1): 351-358.
[19]DEIKMAN J, HAMMER P E. Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana[J]. Plant Physiology, 1995, 108(1): 47-57.
[20]WANG N, XU H, JIANG S, et al. MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in redfleshed apple (Malus sieversii f. niedzwetzkyana)[J]. The Plant Journal, 2017, 90(2): 276-292.
[21]BOGS J, JAFF F W, TAKOS A M, et al. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development[J]. Plant Physiology, 2007, 143(3): 1347-1361.

备注/Memo

备注/Memo:
收稿日期:2018-07-19 基金项目:山东农业大学作物生物学国家重点实验室开放课题项目(2018KF08);中国农业科学院科技创新工程资助项目;中央级公益性科研院所基本科研业务费专项资助项目;辽宁省农业领域青年科技创新人才培养计划项目(2015059);国家自然科学基金项目(31301754) 作者简介:宋杨(1982-),男,吉林长春人,博士,副研究员,主要从事果树生物技术与遗传育种研究。(E-mail)songyang1225@163.com 通讯作者:刘凤之,(E-mail)liufengzhi6699@126.com;张红军,(E-mail)zhjcaas@163.com
更新日期/Last Update: 2019-06-30