[1]赵龙飞,赵亮,狄佳春,等.陆地棉转GR79与GAT基因对草甘膦抗性的鉴定及其遗传规律分析[J].江苏农业学报,2019,(03):531-536.[doi:doi:10.3969/j.issn.1000-4440.2019.03.005]
 ZHAO Long-fei,ZHAO Liang,DI Jia-chun,et al.Identification and inheritance of glyphosateresistant genes GR79 and GAT in upland cotton[J].,2019,(03):531-536.[doi:doi:10.3969/j.issn.1000-4440.2019.03.005]
点击复制

陆地棉转GR79与GAT基因对草甘膦抗性的鉴定及其遗传规律分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年03期
页码:
531-536
栏目:
遗传育种·生理生化
出版日期:
2019-06-30

文章信息/Info

Title:
Identification and inheritance of glyphosateresistant genes GR79 and GAT in upland cotton
作者:
赵龙飞1赵亮2狄佳春2陈旭升2
(1.南京农业大学农学院,江苏 南京210095;2.江苏省农业科学院经济作物研究所,江苏 南京 210014)
Author(s):
ZHAO Long-fei1ZHAO Liang2DI Jia-chun2CHEN Xu-sheng2
(1.Agronomy College, Nanjing Agricultural University, Nanjing 210095, China;2.Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
GGK-2抗草甘膦基因GR79GAT遗传规律
Keywords:
GGK-2glyphosateresistant genesGR79GATinheritance
分类号:
Q78
DOI:
doi:10.3969/j.issn.1000-4440.2019.03.005
文献标志码:
A
摘要:
本研究采用特异引物对陆地棉种质系GGK2的抗草甘膦基因进行PCR鉴定,结果显示:GGK2不仅扩增出488 bp的GR79基因的特征条带,同时还扩增出379 bp的GAT基因特征条带。而后采用草甘膦对陆地棉与陆地棉杂交F2分离群体进行浸种抗性鉴定,结果显示GGK2对草甘膦表现出良好抗性,其抗草甘膦性状分离符合抗性株∶非抗性株=3∶1的质量性状分离规律,显示抗草甘膦性状是受孟德尔单显性基因控制的质量性状。同时,利用陆地棉与陆地棉杂交F2群体对抗性基因GR79和GAT的分离进行PCR检测,显示目的基因GR79和GAT导入棉花后,以共有的方式在棉花杂交后代稳定地遗传传递,共有比率高达979%。而后,采用海岛棉与陆地棉杂交F2群体作为定位群体,利用SSR分子标记对外源基因进行遗传定位,结果显示GR79和GAT 2个基因均被定位于棉花第20号染色体上,并表现为连锁遗传,其遗传距离为33 cM。在GR79基因位点一侧有7个SSR分子标记,与其最近的标记为相距71 cM的NAU2579;在GAT基因位点一侧也有7个SSR分子标记,与其最近的标记是相距39 cM的NAU3137。本研究为品系GGK2在抗除草剂棉花育种中的应用提供了理论依据。
Abstract:
The specific primer was used to identify glyphosateresistant genes in upland cotton GGK2. The results showed that GGK2 not only amplified the GR79 gene with 488 bp characteristic band, but also had the GAT gene with characteristic band of 379 bp. Then seeds of hybrid F2 population of upland cotton crossing upland cotton soaked by 0.3% glyphosate were used to study glyphosateresistance inheritance. The results showed that GGK2 had good resistance to glyphosate, and the glyphosateresistant character was quality trait consistent with resistance plants to nonresistant plants equal to 3∶1 separation ratio, showing that the resistance to glyphosate was the quality trait controlled by a single dominant gene. At the same time, the separation of resistance genes GR79 and GAT in the F2 group of upland cotton crossing upland cotton was determined by PCR. After the target genes GR79 and GAT were introduced into cotton, they were stably transferred in a coexistent manner in cotton hybrid offspring, with a total ratio of 97.9%. Then, the F2 group of upland cotton crossing sealand cotton was used to make preliminary location of the exogenic genes by SSR molecular markers. The results showed that both GR79 and GAT genes were mapped to the 20th cotton chromosome, with genetic distance of 3.3 cM. There were seven SSR molecular markers on the side of the gene GR79, the closest marker was NAU2579, with genetic distance of 7.1 cM. There were seven SSR molecular markers on the side of the gene GAT, the closest marker was NAU3137, with genetic distance of 3.9 cM. This study provides a theoretical basis for applying the strain GGK2 in herbicide resistant cotton breeding.

参考文献/References:

[1]郭三堆,王远,孙国清,等. 中国转基因棉花研发应用二十年[J]. 中国农业科学, 2015, 48(17):3372-3387.
[2]陈旭升. 抗除草剂棉花研究进展[J]. 江西农业学报,2006,18(1):94-98.
[3]COMAI L, SEN L, STALKER D. An altered aroA gene product confers resistant to the herbicide glyphosate[J]. Science, 1983,221:370-371.
[4]COMAI L, FACCIOTTI D, HIATT W R, et al. Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate[J]. Nature, 1985,371:741-744.
[5]NIDA D L,KOLACZ K H, LEEMAN M, et al. Glyphosatetolerant cotton: genetic characterization and protein expression[J]. Agric Food Chem, 1996,44(7):1960-1966.
[6]祝水金,汪静儿,俞志华,等. 棉花抗草甘膦突变体筛选及其在杂种优势利用中的应用[J]. 棉花学报, 2003, 15(4): 227-230.
[7]谢龙旭,李云锋,徐培林. 根癌农杆菌介导的转aroAM12基因棉花植株的草甘膦抗性[J].植物生理与分子生物学学报,2004,30(2):173-178.
[8]赵福永,谢龙旭,田颖川,等. 抗草甘膦基因aroAM12及抗虫基因Bts1m的转基因棉株[J].作物学报,2005,31(1):108-113.
[9]马燕斌,王霞,吴霞,等.新的抗草甘膦转基因棉花获得的初报[J].山西农业科学,2013,41(10):1046-1049.
[10]燕树锋,祝水金,刘海芳,等. 转EPSPS基因抗草甘膦棉花的遗传分析[J]. 华北农学报, 2015,30(3):54-57.
[11]王慧,闫晓红,徐杰,等.我国抗草甘膦基因的发掘现状[J].农业生物技术学报,2014,22(1):109-118.
[12]郭三堆,孙豹,张锐,等.一种含有草甘膦抗性基因的表达载体及其应用:201410204703.6[P]. 2014-05-15.
[13]郭三堆,孙豹,孟志刚,等. 转抗虫、抗除草剂基因棉花分子育种[C]//中国农学会棉花分会.中囯棉花学会2015年年会论文汇编.安阳:中国棉花杂志社,2015: 50.
[14]梁成真,孙豹,孟志刚,等. GR79epsps和GAT协同增效培育新型低残留高抗草甘膦棉花[C]//中国农学会棉花分会.中国农学会棉花分会2017年年会暨第九次会员代表大会论文汇编.安阳:中国棉花杂志社,2017:52.
[15]匡猛,杨伟华,许红霞,等.单粒棉花种子 DNA 快速提取方法[J].分子植物育种,2010,8(4):827-831.
[16]陈旭升,刘新民,狄佳春,等. 陆地棉抗草甘膦性状的遗传规律分析[J]. 江苏农业科学,2009(1):76-78.
[17]景超,马晓杰,狄佳春,等.陆地棉超矮秆突变体基因的初步定位[J].遗传,2011(12):1393-1397.
[18]张军,武耀廷,郭旺珍,等.棉花微卫星标记的 PAGE/银染快速检测[J].棉花学报,2000,21(5):267-269.
[19]刘吉焘,马晓杰,狄佳春,等. 棉花草甘膦抗性基因CP4EPSPS的初步定位[J]. 江苏农业学报, 2013, 29(3):480-484.
[20]安百伟,赵亮,狄佳春,等. 陆地棉Bt抗虫基因类型鉴定与染色体定位[J]. 江苏农业学报,2016,32(2):262-266.
[21]周向阳,赵亮,狄佳春,等. 抗虫杂交棉苏杂6号抗虫亲本的Bt基因鉴定与染色体定位[J].江苏农业学报,2016,32(5):987-991.
[22]GUO W, CAI C, WANG C, et al. A microsatellitebased, generich linkage map reveals genome structure, function and evolution in Gossypium[J]. Genetics, 2007, 176(1):527-541.
[23]ZHAO L, LV Y D, CAI C P, et al. Toward allotetraploid cotton genome assembly: integration of a highdensity molecular genetic linkage map with DNA sequence information[J]. BMC Genomics, 2012, 13:539-570.

备注/Memo

备注/Memo:
收稿日期:2018-09-29 基金项目:国家转基因生物新品种培育科技重大专项(2016ZX08005-005、2016ZX08005001-008) 作者简介:赵龙飞(1990-),男,河南周口人,硕士研究生。研究方向为棉花遗传育种。(Tel)15261871076;(E-mail)1107310135@qq.com 通讯作者:陈旭升,(Tel)02584390371;(E-mail)njcxs@126.com
更新日期/Last Update: 2019-06-30