参考文献/References:
[1]VRY A A, SENTENAC H. Molecular mechanisms and regulation of K+ transport in higher plants [J]. Annual Review of Plant Biology, 2003, 54: 575-603.
[2]GRABOV A. Plant KT/KUP/HAK potassium transporters: Single family-multiple functions [J]. Annals of Botany, 2007, 99: 1035-1041.
[3]DEMIRAL M A, KSEOGLU A T. Effect of potassium on yield, fruit quality, and chemical composition of green house-grown aalia melon [J]. Journal of Plant Nutrition, 2005, 28: 93-100.
[4]YURTSEVEN E, KESMEZ G D, NLKARA A. The effects of water salinity and potassium levels on yield, fruit quality and water consumption of a native central anatolian tomato species (Lycopersicon esculantum) [J]. Agricultural Water Management, 2005, 78: 128-135.
[5]HARTZ T K, JOHNSTONE P R, FRANCIS D M, et al. Processing tomato yield and fruit quality improved with potassium fertigation [J]. Hort Science, 2005, 40: 1862-1867.
[6]宋志忠,郭绍雷,马瑞娟,等. KT/HAK/KUP家族基因在桃开花期的表达及对钾肥施放的响应分析 J]. 中国农业科学, 2015, 48(6): 1177-1185.
[7]宋志忠,许建兰,张斌斌,等. 叶面喷施钾肥对霞脆桃果实品质及KUP基因表达的影响[J]. 江苏农业学报,2018,34(5):1107-1112.
[8]CHANROJ S, LU Y, PADMANABAN S, et al. Plant-specific cation/H+ exchanger 17 and its homologs are endomembrane K+ transporters with roles in protein sorting [J]. Journal of Biology Chemistry, 2011, 286(39): 33931-33941.
[9]CHANROJ S, WANG G, VENEMA K, et al. Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants [J]. Frontiers in Plant Science, 2012, 3: 25.
[10]BASSIL E, BLUMWALD E. The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters [J]. Current Opinion in Plant Biology, 2014, 22: 1-6.
[11]MASER P, THOMINE S, SCHROEDER J I, et al. Phylogenetic relationships within cation transporter families of Arabidopsis [J]. Plant Physiology, 2001, 126: 1646-1667.
[12]HAN L, LI J L, WANG L, et al. Identification and localized expression of putative K+/H+ antiporter genes in Arabidopsis [J]. Acta Physiologiae Plantarum, 2015, 37(5): 1-14.
[13]ARANDA-SICILIA M N, CAGNAC O, CHANROJ S, et al. Arabidopsis KEA2, a homolog of bacterial KefC, encodes a K+/H+ antiporter with a chloroplast transit peptide [J]. BBA-Biomembranes, 2012, 1818(9): 2362-2371.
[14]ZHENG S, PAN T, FAN L G, et al. A novel AtKEA gene family, homolog of bacterial K+/H+ antiporters, plays potential roles in K+ homeostasis and osmotic adjustment in Arabidopsis [J]. PLoS ONE, 2013, 8(11): e81463.
[15]ARMBRUSTER U, CARRILLO L R, VENEMA K, et al. Ion antiport accelerates photosynthetic acclimation in fluctuating light environments [J]. Nature Communications, 2014, 5: 5439.
[16]KUNZ H H, GIERTH M, HERDEAN A, et al. Plastidial transporters KEA1, -2, and -3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(20): 7480-7485.
[17]ZHOU H, QI K, LIU X, et al. Genome-wide identification and comparative analysis of the cation proton antiporters family in pear and four other Rosaceae species [J]. Molecular Genetics and Genomics, 2016, 291: 1727-1742.
[18]KANG C, DARWISH O, GERETZ, et al. Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca [J]. Plant Cell, 2013, 25:1960-1978.
[19]FAIT A, HANHINEVA K, BELEGGIA R, et al. Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development [J]. Plant Physiology, 2008, 148 (2):730-750.
[20]LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method [J]. Methods, 2001, 25(4): 402-408.
[21]WANG Y, WU W H. Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency [J]. Current Opinion in Plant Biology, 2015, 25:46-52.
[22]CHEN H T, CHEN X, WU B Y, et al. Whole-genome identification and expression analysis of K+ efflux antiporter (KEA) and Na+/H+ antiporter (NHX) families under abiotic stress in soybean [J]. Journal of Intergrative Agriculture, 2015, 14(6): 1171-1183.
[23]SONG Z Z, GUO S L, ZHANG C H, et al. KT/HAK/KUP potassium transporter genes differentially expressed during fruit devcelopment, ripening, and postharvest shelf-life of ‘Xiahui6’ peaches [J]. Acta Physiologiae Plantarum, 2015, 37:131.
相似文献/References:
[1]巫建华,贾思振,冯英娜,等.茉莉酸合成关键酶基因FaOPR3调控草莓果实成熟[J].江苏农业学报,2016,(05):1148.[doi:10.3969/j.issn.1000-4440.2016.05.031]
WU Jian-hua,JIA Si-zhen,FENG Ying-na,et al.Regulation of strawberry fruit ripening by jasmonic acid synthesis gene FaOPR3[J].,2016,(02):1148.[doi:10.3969/j.issn.1000-4440.2016.05.031]
[2]赵密珍,庞夫花,袁华招,等.不同栽培条件下草莓品种宁玉花序分化进程[J].江苏农业学报,2016,(01):196.[doi:10.3969/j.issn.1000-4440.2016.01.030
]
ZHAO Mi-zhen,PANG Fu-hua,YUAN Hua-zhao,et al.Floral bud differentiation of strawberry Ningyu under conditions of forcing cultivation and open field cultivation[J].,2016,(02):196.[doi:10.3969/j.issn.1000-4440.2016.01.030
]
[3]吴祥,姚克兵,吉沐祥,等.句容地区草莓枯萎病病原菌的分离鉴定及田间防治[J].江苏农业学报,2015,(04):764.[doi:10.3969/j.issn.1000-4440.2015.04.009]
WU Xiang,YAO Ke-bing,JI Mu-xiang,et al.Isolation and identification and field control of strawberry fusarium wilt in Jurong, Jiangsu province[J].,2015,(02):764.[doi:10.3969/j.issn.1000-4440.2015.04.009]
[4]周游,李海梅,赵金山,等.乳酸菌对草莓生长和品质性状的影响[J].江苏农业学报,2017,(05):1124.[doi:doi:10.3969/j.issn.1000-4440.2017.05.025]
ZHOU You,LI Hai-mei,ZHAO Jin-shan,et al.Effects of lactic acid bacteria on the growth and quality characters of strawberry[J].,2017,(02):1124.[doi:doi:10.3969/j.issn.1000-4440.2017.05.025]
[5]江景勇,王会福,何玲玲,等.台州草莓农药残留风险评估[J].江苏农业学报,2017,(06):1408.[doi:doi:10.3969/j.issn.1000-4440.2017.06.030]
JIANG Jing-yong,WANG Hui-fu,HE Ling-ling,et al.Risk assessment of pesticide residues in strawberry from Taizhou city[J].,2017,(02):1408.[doi:doi:10.3969/j.issn.1000-4440.2017.06.030]
[6]丛嘉昕,宋江峰,李大婧,等.基于RSM和MLP-ANN的草莓果浆超声酶解参数优化[J].江苏农业学报,2018,(06):1354.[doi:doi:10.3969/j.issn.1000-4440.2018.06.022]
CONG Jia-xin,SONG Jiang-feng,LI Da-jing,et al.Optimization of ultrasonic enzymolysis of strawberry pulp based on RSM and MLP-ANN[J].,2018,(02):1354.[doi:doi:10.3969/j.issn.1000-4440.2018.06.022]
[7]王廷峰,赵密珍,关玲,等.玉米套作及秸秆还田对草莓连作土壤养分及微生物区系的影响[J].江苏农业学报,2019,(06):1421.[doi:doi:10.3969/j.issn.1000-4440.2019.06.022]
WANG Ting-feng,ZHAO Mi-zhen,GUAN-Ling,et al.Effects of intercropping with corn and straw returning on nutrients and microflora in strawberry continuous cropping soil[J].,2019,(02):1421.[doi:doi:10.3969/j.issn.1000-4440.2019.06.022]
[8]张宽朝,陈杰,马伟,等.响应面法优化草莓总黄酮提取工艺[J].江苏农业学报,2019,(06):1450.[doi:doi:10.3969/j.issn.1000-4440.2019.06.026]
ZHANG Kuan-chao,CHEN Jie,MA Wei,et al.Optimization on extraction technology of total flavonoids from strawberry by response surface methodology[J].,2019,(02):1450.[doi:doi:10.3969/j.issn.1000-4440.2019.06.026]
[9]李梦雅,陈莎莎,王世梅.连作草莓低发病土壤与高发病土壤理化性质及生物学特征差异比较[J].江苏农业学报,2021,(04):910.[doi:doi:10.3969/j.issn.1000-4440.2021.04.013]
LI Meng-ya,CHEN Sha-sha,WANG Shi-mei.Contrast of physicochemical properties and biological characteristics of low disease and high disease soils of continuous cropping strawberry[J].,2021,(02):910.[doi:doi:10.3969/j.issn.1000-4440.2021.04.013]
[10]朱丽,王庆莲,唐山远,等.不同试剂处理对草莓植株生长及根际微生物群落结构的影响[J].江苏农业学报,2023,(01):198.[doi:doi:10.3969/j.issn.1000-4440.2023.01.023]
ZHU Li,WANG Qing-lian,TANG Shan-yuan,et al.Effects of different reagent treatments on strawberry plant growth and rhizosphere microbial community structure[J].,2023,(02):198.[doi:doi:10.3969/j.issn.1000-4440.2023.01.023]