[1]冉颖杭,谢天铧,霍连飞,等.农田背景噪声下的土壤结构体数字图像信息特征[J].江苏农业学报,2019,(02):313-320.[doi:doi:10.3969/j.issn.1000-4440.2019.02.011]
 RAN Ying-hang,XIE Tian-hua,HUO Lian-fei,et al.Information characteristics of digital images of in-situ soil structure under the background noise in the farmland[J].,2019,(02):313-320.[doi:doi:10.3969/j.issn.1000-4440.2019.02.011]
点击复制

农田背景噪声下的土壤结构体数字图像信息特征()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年02期
页码:
313-320
栏目:
耕作栽培·资源环境
出版日期:
2019-04-30

文章信息/Info

Title:
Information characteristics of digital images of in-situ soil structure under the background noise in the farmland
作者:
冉颖杭1谢天铧1霍连飞1孙克润2丁启朔1何瑞银1汪小旵1
(1.南京农业大学工学院/江苏省智能化农业装备重点实验室,江苏南京210031;2.银华春翔有限公司,江苏连云港222200)
Author(s):
RAN Ying-hang1XIE Tian-hua1HUO Lian-fei1SUN Ke-run2DING Qi-shuo1HE Rui-yin1WANG Xiao-chan1
(1.College of Engineering, Nanjing Agricultural University/Key Laboratory of Intelligent Agricultural Equipment in Jiangsu Province, Nanjing 210031, China;2.Yinhuachunxiang Co.,Ltd., Lianyungang 222200, China)
关键词:
数字图像原位分析土壤尺度分布线段法体视概率法
Keywords:
digital imagein-situ analysissize distributionline section methodvolume probability method
分类号:
TP751
DOI:
doi:10.3969/j.issn.1000-4440.2019.02.011
文献标志码:
A
摘要:
智慧农业的技术基础是基于机器主体的农情信息获取、加工与分析。土壤结构管理是智慧农业的重要子模块,但目前尚不清楚农田背景噪声下土壤结构体的图像信息特征以及目标信息的信噪分离、纯化和加工方法。本研究逐级递进界定田间土壤结构体的数字图像信息特征,并针对自然光源、秸秆及有机质混杂、土壤结构体孔隙等噪声源逐一处理,同时引入了线段法、体视概率法定量土壤结构体信息。筛分法所得结果用于对照。结果表明农田背景下土壤结构体信息受多重环境背景噪声影响,为此需要进行系统补光、噪声过滤、土壤孔隙形态修补等技术处理才能够实现基于机器主体的土壤结构体目标信息获取。运用线段法和体视概率法均能较好地定量土壤结构体的尺度分布信息,线段法与体视概率法所得到的土壤结构体的累积分布数据与筛分数据的相关性(R2)大于0.96、均方根误差(RMSE)小于 0.1 mm。
Abstract:
The technological basis of intelligent agriculture is concerned with machinery-based system for information collection, processing and analysis. Management of soil structure is a key sub-model for intelligent agriculture. However, little has been reported on the image characteristics of soil structural information in-situ, not to mention the separation of target information from background noise, signal purification and processing. Step-by-step definition was made to illustrate the information characteristics of soil structural images. Technological solutions were made for each specific background noise such as. supplementary lighting, filtering of straw noises, and soil pores and clods boundary patching etc. Line section method and volume probability method were applied for soil structural information statistics. In addition, sieving method was used to collect soil structural information as a referencing basis. It was found that, under field conditions, soil structural information was intensely affected or even merged in the background noises. It was thus necessary to implement artificial lighting, straw noise filtering, patching or fixing on the soil pores. Both line section method and volume probability method quantified soil structural information satisfactorily. As compared with the sieving method (R2>0.96, RMSE<0.1 mm), both methods provided higher results.

参考文献/References:

[1]何勇,赵春江,吴迪,等. 作物-环境信息的快速获取技术与传感仪器[J].中国科学(信息科学), 2010(S1):5-24.
[2]GUIMARES R M L, JUNIOR A F N, SILVA W G, et al. The merits of the Visual evaluation of soil structure method (VESS) for assessing soil physical quality in the remote, undeveloped regions of the Amazon basin[J]. Soil & Tillage Research, 2016, 173:75-82.
[3]ASKARI M S, CUI J, HOLDEN N. The visual evaluation of soil structure under arable management[J]. Soil & Tillage Research, 2013,134:1-10.
[4]BALL B C, BATEY T, MUNKHOLM L J. Field assessment of soil structural quality-a development of the Peerlkamp test[J]. Soil Use & Management, 2010, 23(4):329-337.
[5]MONCADA M P, GABRIELS D, LOBO D, et al. Visual field assessment of soil structural quality in tropical soils[J]. Soil & Tillage Research, 2014, 139(2):8-18.
[6]中国机械工业部.旋耕机械试验方法:GB/T5668.3-1995 [S].北京:中国标准出版社,1995
[7]姚青,张超,王正,等. 分布式移动农业病虫害图像采集与诊断系统设计与试验[J]. 农业工程学报, 2017, 33(S1):184-191.
[8]周俊,王明军,邵乔林. 农田图像绿色植物自适应分割方法[J]. 农业工程学报, 2013, 29(18):163-170.
[9]杨超,苏正安,马菁,等. 基于无人机影像快速估算矿山排土场边坡土壤侵蚀速率的方法[J]. 水土保持通报, 2016, 36(6):126-130.
[10]HASEGAWA H, TAKIGAWA T, KOIKE M, et al. Studies on visual recognition of an agricultural autonomous tractor : detection of the field state by image processing[J]. Japanese Journal of Farm Work Research, 2000, 35(3):141-147.
[11]高雅,丁启朔,李毅念,等. 土壤结构的数字图像分析方法与指标[J]. 土壤通报, 2015, 46(3):513-518.
[12]AL-ROUSAN T, MASAD E, TUTUMLUER E, et al. Evaluation of image analysis techniques for quantifying aggregate shape characteristics[J]. Construction & Building Materials, 2007, 21(5):978-990
[13]毕利东,张斌,潘继花. 运用Image J软件分析土壤结构特征[J]. 土壤, 2009, 41(4):654-658.
[14]李德成,VELDE B,张桃林. 利用土壤切片的数字图像定量评价土壤孔隙变异度和复杂度[J]. 土壤学报, 2003, 40(5):678-682.
[15]BIRD N, DAZ M C, SAA A, et al. Fractal and multifractal analysis of pore-scale images of soil[J]. Journal of Hydrology, 2006, 322(1-4):211-219.
[16]张荣标,何加祥,吴涛,等. 基于图像处理的土壤表层含水率在线检测方法研究[J]. 农业工程学报, 2007, 23(10):57-61.
[17]鲍艳松,刘良云,王纪华,等. 利用ASAR图像监测土壤含水量和小麦覆盖度[J]. 遥感学报, 2006, 10(2):263-271.
[18]BRYK M. Evaluation of soil aggregate surface roughness by image analysis[J]. Soil Science Annual, 2012, 63(2):9-13.
[19]SOFOU A, EVANGELOPOULOS G, MARAGOS P. Soil image segmentation and texture analysis: a computer vision approach[J]. IEEE Geoscience & Remote Sensing Letters, 2005, 2(4):394-398.
[20]FERNLUND J M R, ZIMMERMAN R W, KRAGIC D. Influence of volume/mass on grain-size curves and conversion of image-analysis size to sieve size[J]. Engineering Geology, 2007, 90(3/4):124-137.
[21]KUMARA G, HAYANO K, OGIWARA K. Image analysis techniques on evaluation of particle size distribution of gravel[J]. International Journal of Geomate Geotechnique Construction Materials & Environment, 2012, 3(1):290-297.
[22]BOGREKCI I, GODWIN R J. Development of an image-processing technique for soil tilth sensing[J]. Biosystems Engineering, 2007, 97(3):323-331.
[23]CHIMI-CHIADJEU O, HGARAT-MASCLE S L, VANNIER E, et al. Automatic clod detection and boundary estimation from digital elevation model images using different approaches[J]. Catena, 2014, 118:73-83.
[24]CHIMI-CHIADJEU O, VANNIER E, DUSSAUX R, et al. Influence of gradient estimation on clod identification on a seedbed digital elevation model[J]. Environmental & Engineering Geoscience, 2012, 17(4):337-352.
[25]TACONET O, VANNIER E, HGARATMASCLE S L. A contour-based approach for clods identification and characterization on a soil surface.[J]. Soil & Tillage Research, 2010, 109(2):123-132.
[26]郭文川,周超超,韩文霆. 基于Android手机的植物叶片面积快速无损测量系统[J]. 农业机械学报, 2014, 45(1):275-280.
[27]OHTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man & Cybernetics, 2007, 9(1):62-66.
[28]RAFAEL C G, RICHARD E W, STEVEN L E. 数字图像处理的MATLAB实现[M]. 北京:清华大学出版社, 2013.
[29]林大泽. 爆堆块度评价方法研究的进展[J]. 中国安全科学学报, 2003, 13(9):9-13.
[30]张继春,钮强,徐小荷. 测定爆堆块度组成的新方法——体视概率计算法[J]. 中国有色金属学报, 1995(4):25-30.
[31]丁启朔,潘根兴,丁为民. 稻田耕后土壤结构的描述方法与指标——以南京江浦农场为例[J]. 土壤通报, 2011, 42(1):1-6.

相似文献/References:

[1]杨浩,张通,阳苇丽,等.基于图像处理的雪茄烟叶晾制期间含水率预测模型比较[J].江苏农业学报,2023,(09):1891.[doi:doi:10.3969/j.issn.1000-4440.2023.09.011]
 YANG Hao,ZHANG Tong,YANG Wei-li,et al.Comparison of prediction models for moisture content of cigar tobacco leaves during drying period based on image processing[J].,2023,(02):1891.[doi:doi:10.3969/j.issn.1000-4440.2023.09.011]

备注/Memo

备注/Memo:
收稿日期:2018-07-18 基金项目:国家大学生创新性实验计划项目(201710307100);国家重点研发计划“粮食丰产增效科技创新”重点专项(2016YFD0300900);江苏省苏北科技专项(ZL-LYG2017008);江苏省农业科技自主创新基金项目[CX(17)1002] 作者简介:冉颖杭(1997-),女,重庆人,本科,主要从事土壤物理力学的研究。(E-mail) r.yinghang@outlook.com 通讯作者:丁启朔,(E-mail)qsding@njau.edu.cn
更新日期/Last Update: 2019-05-05