参考文献/References:
[1]PALUKAITIS P, ROOSSINCK M J, DIETZGEN R G, et al. Cucumber mosaic virus [J]. Annals of the Phytopathological Society of Japan, 2012, 31(1):281-348.
[2]毛晓红,于毅,张秀霞,等.春季西葫芦日光温室黄瓜花叶病毒病发生规律与防虫网的防控效果[J].江苏农业科学,2017,45(16):96-98.
[3]TIEN P, WU G. Satellite RNA for the biocontrol of plant disease [J]. Advances in Virus Research, 1991, 39(1):321-339.
[4]LUISARTEAGA M, ALVAREZ J M, ALONSOPRADOS J L, et al. Occurrence, distribution, and relative incidence of mosaic viruses infecting field-grown melon in Spain [J]. Plant Disease, 1998, 82(9):979-982.
[5]AVILLA C, COLLAR J L, DUQUE M, et al. Yield of bell pepper(Capsicum annuum) inoculated with CMV and/or PVY at different time intervals [J]. Journal of Plant Diseases and Protection, 1997, 104(1):1-8.
[6]GALLITELLI D. The ecology of cucumber mosaic virus and sustainable agriculture [J]. Virus Research, 2000, 71(2):9-21.
[7]JORDA C, ALFARO A, ARANDA A, et al. Epidemic of cucumber mosaic virus plus satellite RNA in tomatoes of eastern Spain [J]. Plant Disease, 1992, 76(4):363-366.
[8]SCHOLTHOF K B G, ADKINS S, CZOSNEK H, et al. Top 10 plant viruses in molecular plant pathology [J]. Molecular Plant Pathology, 2011, 12(9):938-954.
[9]郭广君,王述彬,刁卫平,等. 辣椒抗黄瓜花叶病毒病研究进展 [J]. 华北农学报, 2015, 29(S1):77-84.
[10]JONES J D, DANGL J L. The plant immune system [J]. Nature, 2006, 444(7117):323-329.
[11]SCHWESSINGER B, RONALD P C. Plant innate immunity:perception of conserved microbial signatures [J]. Plant Biology, 2012, 63(63):451-482.
[12]KANG B C, YEAM I, JAHN M M. Genetics of plant virus resistance [J]. Annu Rev Phytopathol, 2005, 43 581-621.
[13]BENDAHMANE A, KANYUKA K, BAULCOMBE D C. The Rx gene from potato controls separate virus resistance and cell death responses [J]. Plant Cell, 1999, 11(5):781-792.
[14]LI B, HU F, ZHANG Q, et al. A cellular gene as a double surveillance agent for plant to combat pathogen [J]. Plant Signaling & Behavior, 2013, 8(11):1-2.
[15]GURURANI M A, VENKATESH J, UPADHYAYA C P, et al. Plant disease resistance genes:current status and future directions [J]. Physiological and Molecular Plant Pathology, 2012, 78:51-65.
[16]ZVEREVA A S, POOGGIN M M. Silencing and innate immunity in plant defense against viral and non-viral pathogens [J]. Viruses, 2012, 4(11):2578-2597.
[17]BENDAHMANE A, KHM B A, DEDI C, et al. The coat protein of potato virus X is a strain specific elicitor of Rx1 mediated virus resistance in potato [J]. The Plant Journal, 1995, 8(6):933-941.
[18]VIDAL S, CABRERA H, ANDERSSON R A, et al. Potato gene Y-1 is an N gene homolog that confers cell death upon infection with potato virus Y [J]. Molecular Plant-Microbe Interactions, 2002, 15(7):717-727.
[19]KANG B C, YEAM I, FRANTZ J D, et al. The pvr1 locus in capsicum encodes a translation initiation factor eIF4E that interacts with tobacco etch virus VPg [J]. The Plant Journal, 2005, 42(3):392-405.
[20]MOURY B, MOREL C, JOHANSEN E, et al. Mutations in potato virus Y genome-linked protein determine virulence toward recessive resistances in Capsicum annuum and Lycopersicon hirsutum [J]. Molecular Plant-Microbe Interactions, 2004, 17(3):322-329.
[21]RUFFEL S, DUSSAULT M H, PALLOIX A, et al. A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E(eIF4E) [J]. The Plant Journal, 2002, 32(6):1067-1075.
[22]WHITHAM S, DINESH-KUMAR S, CHOI D, et al. The product of the tobacco mosaic virus resistance gene N:similarity to toll and the interleukin-1 receptor [J]. Cell, 1994, 78(6):1101-1115.
[23]WHITHAM S, MCCORMICK S, BAKER B. The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato [J]. Proceedings of the National Academy of Sciences, 1996, 93(16):8776-8781.
[24]LANFERMEIJER F C, DIJKHUIS J, STURRE M J, et al. Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-22 from Lycopersicon esculentum [J]. Plant Molecular Biology, 2003, 52(5):1039-1051.
[25]GARRIDO-RAMIREZ E R, WJ S M L, GILBERTSON R L. Bean dwarf mosaic virus BV1 protein is a determinant of the hypersensitive response and avirulence in Phaseolus vulgaris [J]. Molecular Plant-Microbe Interactions, 2000, 13(11):1184-1194.
[26]TAKAHASHI H, MILLER J, NOZAKI Y, et al. RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism [J]. The Plant Journal, 2002, 32(5):655-667.
[27]GALLOIS J L, CHARRON C, SNCHEZ F, et al. Single amino acid changes in the turnip mosaic virus viral genome-linked protein(VPg) confer virulence towards Arabidopsis thaliana mutants knocked out for eukaryotic initiation factors eIF(iso) 4E and eIF(iso) 4G [J]. Journal of General Virology, 2010, 91(1):288-293.
[28]YOSHII M, NISHIKIORI M, TOMITA K, et al., The Arabidopsis cucumovirus multiplication 1 and 2 loci encode translation initiation factors 4E and 4G [J]. Journal of Virology, 2004, 78(12):6102-6111.
[29]GAO Z, JOHANSEN E, EYERS S, et al. The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking [J]. The Plant Journal, 2004, 40(3):376-385.
[30]JOHANSEN I E, LUND O S, HJULSAGER C K, et al. Recessive resistance in Pisum sativum and potyvirus pathotype resolved in a gene-for-cistron correspondence between host and virus [J]. Journal of Virology, 2001, 75(14):6609-6614.
[31]WITTMANN S, CHATEL H, FORTIN M G, et al. Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor(iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system [J]. Virology, 1997, 234(1):84-92.
[32]JENNER C, SANCHEZ F, NETTLESHIP S, et al. The cylindrical inclusion gene of turnip mosaic virus encodes a pathogenic determinant to the Brassica resistance gene TuRB01[J]. Molecular Plant-Microbe Interactions, 2000, 13(10):1102-1108.
[33]JENNER C E, TOMIMURA K, OHSHIMA K, et al. Mutations in turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes [J]. Virology, 2002, 300(1):50-59.
[34]JENNER C E, WANG X, TOMIMURA K, et al. The dual role of the potyvirus P3 protein of turnip mosaic virus as a symptom and avirulence determinant in brassicas [J]. Molecular Plant-Microbe Interactions, 2003, 16(9):777-784.
[35]SPASSOVA M I, PRINS T W, FOLKERTSMA R T, et al. The tomato gene Sw5 is a member of the coiled coil, nucleotide binding, leucine-rich repeat class of plant resistance genes and confers resistance to TSWV in tobacco [J]. Molecular Breeding, 2001, 7(2):151-161.
[36]HAJIMORAD M R, HILL J H. Rsv1-mediated resistance against soybean mosaic virus-N is hypersensitive response-independent at inoculation site, but has the potential to initiate a hypersensitive response-like mechanism [J]. Molecular Plant-Microbe Interactions, 2001, 14(5):587-598.
[37]CHISHOLM S T, MAHAJAN S K, WHITHAM S A, et al. Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of tobacco etch virus[J]. Proceedings of the National Academy of Sciences, 2000, 97(1):489-494.
[38]WHITHAM S A, ANDERBERG R J, CHISHOLM S T, et al. Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock-like protein [J]. The Plant Cell, 2000, 12(4):569-582.
[39]钱礼超,刘玉乐. 植物抗病毒分子机制 [J]. 中国科学:生命科学, 2014, 44(10):999-1009.
[40]TAKAHASHI H, KANAYAMA Y, ZHENG M S, et al. Antagonistic interactions between the SA and JA signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic virus [J]. Plant and Cell Physiology, 2004, 45(6):803-809.
[41]ISHIHARA T, SEKINE K, HASE S, et al. Overexpression of the Arabidopsis thaliana EDS5 gene enhances resistance to viruses [J]. Plant Biology, 2008, 10(4):451-461.
[42]SEKINE K T, KAWAKAMI S, HASE S, et al. High level expression of a virus resistance gene, RCY1, confers extreme resistance to cucumber mosaic virus in Arabidopsis thaliana [J]. Molecular Plant-Microbe Interactions, 2008, 21(11):1398-1407.
[43]TAKAHASHI H, SHOJI H, ANDO S, et al. RCY1-mediated resistance to cucumber mosaic virus is regulated by LRR domain-mediated interaction with CMV(Y) following degradation of RCY1 [J]. Molecular Plant-Microbe Interactions, 2012, 25(9):1171-1185.
[44]ANDO S, OBINATA A, TAKAHASHI H. WRKY70 interacting with RCY1 disease resistance protein is required for resistance to cucumber mosaic virus in Arabidopsis thaliana [J]. Physiological and Molecular Plant Pathology, 2014, 85:8-14.
[45]SEO Y S, ROJAS M R, LEE J Y, et al. A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(32):11856-11861.
[46]ESSAFI A, DAZ-PENDN J A, MORIONES E, et al. Dissection of the oligogenic resistance to cucumber mosaic virus in the melon accession PI 161375 [J]. Theoretical and Applied Genetics, 2009, 118(2):275-284.
[47]GINER A, PASCUAL L, BOURGEOIS M, et al. A mutation in the melon vacuolar protein sorting 41 prevents systemic infection of cucumber mosaic virus [J]. Scientific Reports, 2017, 7(1) :10471-10483.
[48]KANG W H, HOANG N H, YANG H B, et al. Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers(Capsicum annuum L.) [J]. Theoretical and Applied Genetics, 2010, 120(8):1587-1596.
[49]GUO G, WANG S, LIU J, et al. Rapid identification of QTLs underlying resistance to cucumber mosaic virus in pepper(Capsicum frutescens) [J]. Theoretical and Applied Genetics, 2016, 130(1):41-52.
[50]OHMORI T, MURATA M, MOTOYOSHI F. Molecular characterization of RAPD and SCAR markers linked to the Tm-1 locus in tomato[J]. Theoretical and Applied Genetics, 1996, 92(2):151-156.
[51]周龙溪,刘磊,孙玉燕,等. 类番茄茄LA2951抗黄瓜花叶病毒QTL的定位 [J]. 园艺学报, 2013, 40(10):1905-1915.
[52]MARCZEWSKI W, HENNIG J, GEBHARDT C. The Potato virus S resistance gene Ns maps to potato chromosome VIII [J]. Theoretical and Applied Genetics, 2002, 105(4):564-567.
[53]ZHANG X, YUAN Y R, PEI Y, et al. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis argonaute1 cleavage activity to counter plant defense [J]. Genes and Development, 2006, 20(23):3255-3268.
[54]DU Z, CHEN A, CHEN W, et al. Using a viral vector to reveal the role of microRNA159 in disease symptom induction by a severe strain of cucumber mosaic virus [J]. Plant Physiology, 2014, 164(3):1378-1388.
[55]MUROTA K, SHIMURA H, TAKESHITA M, et al. Interaction between cucumber mosaic virus 2b protein and plant catalase induces a specific necrosis in association with proteasome activity [J]. Plant Cell Reports, 2017, 36(1):37-47.
[56]邹利娟,邓星光,韩雪莹,等. 拟南芥转录因子HAT1对黄瓜花叶病毒的响应 [C]//武维华,种康,葛颂,等, 2016年全国植物生物学大会摘要集. 武汉:中国植物学会, 2016:74.
[57]申莉莉. CMV诱导烟草内质网应激及调控因子NbbZIP28的研究 [D]. 沈阳:沈阳农业大学, 2017.
[58]ZOU L J, DENG X G, ZHANG L E, et al. Nitric oxide as a signaling molecule in brassinosteroid-mediated virus resistance to cucumber mosaic virus in Arabidopsis thaliana [J]. Physiologia Plantarum, 2017. DOI:10.1111/ppl.12677.
[59]ZHOU X, ZHU T, ZHU L S, et al. The role of photoreceptors in response to cucumber mosaic virus in Arabidopsis thaliana [J]. Journal of Plant Growth Regulation, 2017, 36(2):257-270.
[60]HUH S U, MIN J K, HAM B K, et al. A zinc finger protein Tsip1 controls cucumber mosaic virus infection by interacting with the replication complex on vacuolar membranes of the tobacco plant [J]. New Phytologist, 2011, 191(3):746-762.
[61]CHEN L J, FEI C Y, XU Z P, et al. Positive role of phytochromes in Nicotiana tabacum against cucumber mosaic virus via a salicylic acid-dependent pathway [J]. Plant Pathology, 2017,67(2):488-498.
[62]卢冉. 热激蛋白Hsp70在CMV侵染过程中的作用 [D]. 杭州:浙江理工大学, 2016.
[63]陈泉. BnSGS3基因遗传转化油菜和拟南芥及转基因植株对不同病毒抗性研究 [D]. 武汉:华中农业大学, 2015.
[64]龚前园,张超,吴华年,等. 苋色藜NDR1基因抗病毒特性初步研究 [J]. 中国农业科技导报, 2014, 16(6):36-43.
[65]严文. 苋色蔾CaNHO1基因的克隆与抗病毒功能研究 [D]. 成都:四川农业大学, 2016.
[66]孙道阳. 矮牵牛转录因子PhOBF1和PhERF2影响病毒诱导基因沉默效率的机理研究 [D]. 西安:西北农林科技大学, 2016.
[67]CARANTA C, PALLOIX A, LEFEBVRE V, et al. QTLs for a component of partial resistance to cucumber mosaic virus in pepper:restriction of virus installation in host-cells [J]. Theoretical and Applied Genetics, 1997, 94(3/4):431-438.
[68]郭广君,刁卫平,王述彬,等. 辣椒抗黄瓜花叶病毒病研究进展 [J]. 华北农学报, 2014, 29(增刊):77-84.
[69]王兴兴,张正海,王立浩,等. 辣椒抗黄瓜花叶病毒研究进展 [J]. 辣椒杂志, 2015, 13(3):13-17.
[70]ABE A, KOSUGI S, YOSHIDA K, et al. Genome sequencing reveals agronomically important loci in rice using MutMap [J]. Nature Biotechnology, 2012, 30(2):174-178.
[71]TAKAGI H, ABE A, YOSHIDA K, et al. QTL-seq:rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations [J]. The Plant Journal, 2013, 74:174-183.
[72]KIM S, PARK M, YEOM S I, et al. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species [J]. Nature Genetics, 2014, 46(3):270-278.
[73]GUO G, WANG S, LIU J, et al. Rapid identification of QTLs underlying resistance to cucumber mosaic virus in pepper( Capsicum frutescens ) [J]. Theoretical and Applied Genetics, 2016, 130(1):41-52.
[74]MIN H E, HAN J H, YOON J B, et al. QTL mapping of CMVP1 resistance in pepper with a genotyping-by-sequencing approach [J]. Korean Society For Horticultural Science, 2016, 5:109-110.
[75]孙茜. 利用SLAF-seq技术定位辣椒抗黄瓜花叶病毒病基因 [D]. 南京:南京农业大学, 2016.
[76]王兴兴. 辣椒抗CMV相关QTL定位 [D]. 北京:中国农业科学院, 2016.
[77]CHO S W, KIM S, KIM J M, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease [J]. Nature Biotechnology, 2013, 31(3):230-232.
[78]HWANG W Y, FU Y, REYON D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system [J]. Nature Biotechnology, 2013, 31(3):227-229.
[79]JINEK M, EAST A, CHENG A, et al. RNA-programmed genome editing in human cells [J]. Elife, 2013, 2(2):1-9.
[80]MALI P, AACH J, STRANGES P B, et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering [J]. Nature Biotechnology, 2013, 31(9):833-838.
[81]SCOTT D A, RAN F A, ZHANG F, et al. Genome engineering using the CRISPR-Cas9 system [J]. Nature Protocols, 2013, 32(12):2281-2308.
[82]SOYK S, MLLER N A, PARK S J, et al. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato [J]. Nature Genetics, 2017, 49(1):162-168.
[83]RODRGUEZLEAL D, LEMMON Z H, MAN J, et al. Engineering quantitative trait variation for crop improvement by genome editing [J]. Cell, 2017, 171(2):470-480.