[1]蒋倩,朱建国,朱春梧,等.大气CO2浓度升高对糙米和精米中矿质营养元素含量的影响[J].江苏农业学报,2018,(06):1217-1224.[doi:doi:10.3969/j.issn.1000-4440.2018.06.003]
 JIANG Qian,ZHU Jian-guo,ZHU Chun-wu,et al.Influence of free-air CO2 enrichment (FACE) on the content of mineral nutrient elements in brown rice and white rice[J].,2018,(06):1217-1224.[doi:doi:10.3969/j.issn.1000-4440.2018.06.003]
点击复制

大气CO2浓度升高对糙米和精米中矿质营养元素含量的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年06期
页码:
1217-1224
栏目:
遗传育种·生理生化
出版日期:
2018-12-25

文章信息/Info

Title:
Influence of free-air CO2 enrichment (FACE) on the content of mineral nutrient elements in brown rice and white rice
作者:
蒋倩12朱建国1朱春梧1刘钢1徐习12张继双12
(1.中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室,江苏南京210008;2.中国科学院大学,北京100049)
Author(s):
JIANG Qian12ZHU Jian-guo1ZHU Chun-wu1LIU Gang1XU Xi12ZHANG Ji-shuang12
(1.State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;2.University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
FACE水稻糙米精米矿质营养元素加工方式
Keywords:
free-air CO2 enrichmentOryza sativa L.brown ricewhite ricemineral nutrient elementsprocessing methods
分类号:
S162.5+3
DOI:
doi:10.3969/j.issn.1000-4440.2018.06.003
文献标志码:
A
摘要:
利用自由空气CO2浓度升高(Free-air CO2 enrichment,FACE) 平台,在CO2浓度高于对照200 μmol/mol的条件下,以籼稻IIY084和粳稻WYJ21(23)为材料,连续2年(2012和2013年)研究其糙米与精米的品质性状(N、K、P、Ca、Mg、Ni、Mo含量等)对大气CO2浓度升高的响应。结果表明:CO2浓度升高条件下,水稻糙米、精米产量连续2年显著增加,其中,IIY084 2年平均分别增产371%、396%,WYJ21(23)则增产109%、92%。CO2浓度升高处理的IIY084糙米、精米N含量2年平均分别降低111%、77%,而WYJ21(23)分别降低42%、59%。品种效应显著,IIY084糙米、精米产量及其N含量均高于WYJ21(23)。CO2浓度升高对籼稻和粳稻品种糙米、精米K、P、Mg、Ca、Ni、Mo含量没有显著影响。此外,籼稻与粳稻品种糙米中矿质元素含量平均值是精米的110(N)~989(Mg)倍。与WYJ21(23)相比,IIY084糙米、精米产量及N含量对CO2浓度升高的响应更明显,并且糙米中矿质元素含量对CO2浓度升高的响应强于精米。因此,糙米、精米搭配食用是缓解大气CO2浓度升高引起的食用稻米人群部分矿质营养匮乏问题的有效措施之一。
Abstract:
In this study, indica IIY084 and japonica WYJ21(23) (Oryza sativa L.) were grown at a free-air CO2 enrichment (FACE) experimental facility across two growth seasons (2012-2013) under ambient and elevated CO2 conditions. The target CO2 of the FACE plots was 200 μmol/mol above that of ambient. Effects of elevated CO2 on N, K, P, Ca, Mg, Ni and Mo concentrations in both brown rice and white rice of indica and japonica genotypes were investigated. The results showed that the yields of brown rice and white rice were increased after exposed to elevated CO2 for two years. Averagely, the yields of brown and white rice were increased by 37.1%, 39.6% for IIY084, and by 10.9%, 92% for WYJ21(23). Under the treatment of elevated CO2, the average N concentration of brown rice and white rice of IIY084 in two years decreased by 111%, 77%, separately, and those of WYJ21(23) declined by 4.2%, 59%, respectively. In addition, significant cultivar effects were found, the yield and N concentration of brown and white rice in IIY084 were higher than those in WYJ21(23). No significant CO2 effects were found on K, P, Mg, Ca, Ni and Mo concentrations in brown rice and white rice of the tested cultivars. Moreover, the average concentrations of tested mineral elements in brown rice were 1.1 (N) to 9.89 (Mg) times greater than those in white rice. In short, the responses of yield and N concentration of brown and white rice to elevated CO2 of IIY084 were much higher than those of WYJ21(23). Besides, the responses of mineral elements to elevated CO2 in brown rice were stronger than those in white rice. Obviously, the matching use of brown rice and white rice is an effective measure to alleviate the problem of partial mineral nutrient deficiency caused by elevated atmospheric CO2 concentration in the future.

参考文献/References:

[1]National Oceanic and Atmospheric Administration (NOAA). Trends in carbon dioxide [EB/OL]. (2018-10-05 )
[2018-10-16] https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html.
[2]Intergovernmental Panel on Climate Change (IPCC). Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013.
[3]谢晓金,李仁英,张耀鸿,等.CO2浓度升高对水稻和玉米叶片光合生理特性的影响[J].江苏农业科学,2016,44(10):120-123.
[4]李春华,曾青,沙霖楠,等. 大气CO2浓度和温度升高对水稻地上部干物质积累和分配的影响[J]. 生态环境学报, 2016, 25(8): 1336-1342.
[5]刘瑜,尹飞虎,高志建,等.大气CO2浓度增加对新疆绿洲膜下滴灌棉花生长发育的影响[J].江苏农业科学,2016,44(11):108-110.
[6]LONG S P, AINSWORTH E A, LEAKEY A D B, et al. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations [J]. Science, 2006, 312: 1918-1921.
[7]CHEN C, JIANG Q, ZISK L H, et al. Seed vigor of contrasting rice cultivars in response to elevated carbon dioxide [J]. Field Crops Research, 2015, 178: 63-68.
[8]HASEGAWA T, SAKAI H, TOKIDA T, et al. Rice cultivar responses to elevated CO2 at two free-air CO2 enrichment (FACE) sites in Japan [J]. Functional Plant Biology, 2013, 148: 148-159.
[9]TERAO T, MIURA S, YANAGIHARA T, et al. Influence of free-air CO2 enrichment (FACE) on the eating quality of rice [J]. Journal of the Science of Food and Agriculture, 2005, 85(11): 1861-1868.
[10]柴如山,牛耀芳,朱丽青,等. 大气CO2浓度升高对农产品品质影响的研究进展[J]. 应用生态学报, 2011, 22(10): 2765-2775.
[11]MYERS S S, ZANOBETTI A, KLOOG I, et al. Increasing CO2 threatens human nutrition[J]. Nature, 2014, 510(7503): 139-142.
[12]庞静,朱建国,谢祖彬,等. 自由空气CO2浓度升高对水稻营养元素吸收和籽粒中营养元素含量的影响[J]. 中国水稻科学, 2005, 19(4): 350-354.
[13]LIEFFERING M, KIM H Y, KOBAYASHI K, et al. The impact of elevated CO2 on the elemental concentrations of field-grown rice grains [J]. Field Crops Research, 2004, 88(2/3): 279-286.
[14]SENEWEERA S P, CONROY J P. Growth, grain yield and quality of rice (Oryza sativa L.) in response to elevated CO2 and phosphorus nutrition [J]. Journal of Plant Nutrition and Soil Science, 1997, 43: 1131-1136.
[15]LOLADZE I. Rising atmospheric CO2 and human nutrition: towards globally imbalanced plant stoichiometry [J]. Trends in Ecology & Evolution, 2002, 17: 457-461.
[16]WANG Y X, MICHAEL F, SONG Q L, et al. The impact of atmospheric CO2 concentration enrichment on rice quality-A research review [J]. Acta Ecologica Sinica, 2011, 31: 277-282.
[17]中国粮油学会. 粮油食品营养与健康知识百问[M]. 北京:科学普及出版社,2005.
[18]LI C H, ZHU J G, SHA L N, et al. Rice (Oryza sativa L.) growth and nitrogen distribution under elevated CO2 concentration and air temperature [J]. Ecological Research, 2017, 32: 405-411.
[19]XIE B H, ZHOU Z X, MEI B L, et al. Influences of free-air CO2 enrichment (FACE), nitrogen fertilizer and crop residue incorporation on CH4 emissions from irrigated rice fields [J]. Nutrient Cycling in Agroecosystems, 2012, 93: 373-385.
[20]刘钢,韩勇,朱建国,等. 稻麦轮作FACE系统平台I. 系统结构与控制[J]. 应用生态学报, 2002, 13(10): 1253-1258.
[21]ZISKA L H, NAMUCO O, MOYA T, et al. Growth and yield response of field grown tropical rice to increasing carbon dioxide and air temperature [J]. Agronomy Journal, 1997, 89(1): 45-53.
[22]BAKER J T, ALLEN L H. Contrasting crop species responses to CO2 and temperature: rice, soybean and cirtrus, soybean and citrus [J]. Vegetation, 1993, 104/105: 239-260.
[23]KIM H Y, LIEFFERING M, KOBAYASHI K, et al. Effects of free-air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops [J]. Field Crops Research, 2003, 83: 261-270.
[24]全东兴,张强,陈温福,等. 吉林省新育水稻品种(系)的品质性状与产量的相关分析[J]. 安徽农业科学, 2007, 35(14): 4146-4164, 4184.
[25]林海,庞乾林,阮刘青,等. 2010年我国通过审定的水稻品种产量和品质性状分析[J]. 中国稻米, 2011, 17(6): 59-62.
[26]YANG L X, WANG Y L, DONG G C, et al. The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice [J]. Field Crops Research, 2007, 102(2): 128-140.
[27]李春华,曾青,沙霖楠,等. 大气CO2浓度和温度升高对水稻体内微量元素累积的影响[J]. 农业环境科学学报, 2017, 36(6): 1021-1026.
[28]于巍,周坚,徐群英,等. 糙米与精米的营养价值与质构特性比较研究[J]. 食品科学, 2010, 31(9): 95-99.
[29]周晓冬,赖上坤,周娟,等. 开放式空气中CO2浓度增高(FACE)对常规粳稻蛋白质和氨基酸含量的影响[J]. 农业环境科学学报, 2012, 31(7): 1264-1270.
[30]COLEMAN J S, MCCONNAUGHAY K D M, BAZZAZ F A. Elevated CO2 and plant nitrogen-use: is reduced tissue nitrogen concentration size-dependent? [J] Oecologia, 1993, 93: 195-200.
[31]CONROY J P, HOCKING P. Nitrogen nutrition of C3 plants at elevated atmospheric CO2 concentrations[J]. Physiologia Plantarum, 1993, 89: 570-576.
[32]PANG J, ZHU J G, XIE Z B, et al. A new explanation of the N concentration decrease in tissues of rice ( Oryza sativa L.) exposed to elevated atmospheric pCO2 [J]. Environmental and Experimental Botany, 2006, 57: 98-105.
[33]ZHU C W, KOBAYASHI K, LOLADZE I, et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries [J]. Science Advances, 2018, 4(5): 1012.
[34]石元豹,曹兵,宋丽华. CO2浓度倍增对宁夏枸杞种植地土壤养分及微生物的影响[J]. 江苏农业学报, 2016, 32(1): 201-206.
[35]杨树明,曾亚文,杜娟,等. 云南水稻土中主要矿质元素对水稻籽粒矿质元素积累的影响[J]. 湖南农业大学学报(自然科学版), 2009, 35(6): 583-587.
[36]GIFFORD R M, BARRETT D J, LUTZE J L. The effects of elevated [CO2] on the C: N and C: P mass ratios of plant tissues [J]. Plant Soil, 2000, 224(1): 1-14.
[37]GUO J, ZHANG M Q, WANG X W, et al. A possible mechanism of mineral responses to elevated atmospheric CO2 in rice grains [J]. Journal of Integrative Agriculture, 2015, 14(1): 50-57.

相似文献/References:

[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
 WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(06):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
 WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(06):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
 YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(06):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
 LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(06):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
 WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(06):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
 SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(06):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
 ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(06):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
 YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
 LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
 GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]

备注/Memo

备注/Memo:
收稿日期:2018-09-06 基金项目:国家自然科学基金项目(31870423);国家自然科学基金国际(地区)合作与交流项目(31261140364);科技部国际合作与交流项目(2010DFA22770) 作者简介:蒋倩(1980-),女,贵州思南人,博士,高级工程师,主要从事气候变化对水稻生长与稻米品质影响的研究。(E-mail)qjiang@issas.ac.cn 通讯作者:朱建国,(E-mail)jgzhu@issas.ac.cn
更新日期/Last Update: 2018-12-28