[1]闻学政,宋伟,张迎颖,等.凤眼莲深度净化污水处理厂尾水的效果[J].江苏农业学报,2018,(05):1072-1080.[doi:doi:10.3969/j.issn.1000-4440.2018.05.015]
 WEN Xue-zheng,SONG Wei,ZHANG Ying-ying,et al.Effects of Eichhornia crassipes on advanced treatment of tail water in domestic sewage plant[J].,2018,(05):1072-1080.[doi:doi:10.3969/j.issn.1000-4440.2018.05.015]
点击复制

凤眼莲深度净化污水处理厂尾水的效果()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年05期
页码:
1072-1080
栏目:
耕作栽培·资源环境
出版日期:
2018-10-25

文章信息/Info

Title:
Effects of Eichhornia crassipes on advanced treatment of tail water in domestic sewage plant
作者:
闻学政宋伟张迎颖王岩秦红杰刘海琴邱园园严少华张志勇
(江苏省农业科学院农业资源与环境研究所,江苏南京210014)
Author(s):
WEN Xue-zhengSONG WeiZHANG Ying-yingWANG YanQIN Hong-jieLIU Hai-qinQIU Yuan-yuanYAN Shao-huaZHANG Zhi-yong
(Institute of Agricultural Resource and Environmental Sciences,Jiangsu Academy of Agricultural Sciences,Nanjing 210014,China)
关键词:
凤眼莲污水处理厂尾水深度净化
Keywords:
Eichhornia crassipestail water in domestic sewage plantadvanced treatment
分类号:
X52
DOI:
doi:10.3969/j.issn.1000-4440.2018.05.015
文献标志码:
A
摘要:
通过构建三级凤眼莲深度净化塘,对村镇生活污水处理厂尾水进行深度净化。凤眼莲种苗初始投放量为0.60 kg/m2,三级凤眼莲深度净化塘总有效容积为7 500 m3,三级凤眼莲深度净化塘运行期间日均接纳一级A标准生活污水处理厂尾水1 024.50 t。在2015年6月至2015年10月的运行期间,凤眼莲总生物量增加了36.06倍,凤眼莲植株氮、磷累积总量分别增加了44.45倍、55.38倍;三级凤眼莲净化塘处理尾水效果显著,尾水总氮(TN)、总磷(TP)、铵态氮(NH+4-N)和硝态氮(NO-3-N)平均质量浓度分别由 (9.86±3.51) mg/L、(0.38±0.07) mg/L、(0.49±0.09) mg/L和 (7.91±2.27) mg/L降低至 (2.51±1.52) mg/L、(0.10±0.06) mg/L、(0.20±0.08) mg/L和 (1.90±1.46) mg/L,其中TN质量浓度下降值超过7.0 mg/L,各污染物去除率分别为 75.04%±9.02%、68.76%±15.81%、59.12%±13.37%、79.21%±13.91%。三级凤眼莲深度净化塘对尾水氮、磷的平均削减速率分别为 (1 004.01±471.68) mg/(m2·d)和(38.25±9.56) mg/(m2·d),其中,第一、第二级净化塘对总氮的总削减速率分别高达 (1 069.99±276.94) mg/(m2·d)、(1 374.11±1 089.69) mg/(m2·d),对总磷的削减速率分别高达 (74.93±15.99) mg/(m2·d)、(30.65±25.01) mg/(m2·d)。运行期间,深度净化塘去除尾水氮、磷总量累计分别为1100.02 kg、40.36 kg,其中凤眼莲通过同化作用共吸收污水处理厂尾水中氮218.52 kg、磷20.22 kg,约占尾水氮、磷总削减量的19.78%、50.10%。利用综合水质标识指数对污水处理厂尾水和深度净化塘出水进行计算,结果表明污水处理厂尾水由5.322类降至3.410类,达到地表水环境质量标准Ⅲ类标准。
Abstract:
An ecological wastewater purifying project consisting of three ponds with Eichhornia crassipes was constructed for in-depth purifying tail water from a town-run wastewater treatment plant. The initial seedling quantity of Eichhornia crassipes was 0.60 kg/m2,and total effective volume of three stage purification pond was 7 500 m3. During operation of the deep purification pond,the acceptance for the first class of A standard of tail water from wastewater treatment plant was 1 024.50 t per day. During the execution of the project (June 2015 to October 2015),total biomass of Eichhornia crassipes increased 36.06 times. Nitrogen and phosphorus concentrations in Eichhornia crassipes increased 44.45 and 55.38 times,respectively. As the result showed,the ecological engineering could effectively remove nitrogen and phosphorus in the tail water. The concentrations of total nitrogen (TN),total phosphorus (TP),ammonium nitrogen (NH+4-N) and nitrate nitrogen (NO-3-N) of the tail water were reduced from (9.86±3.51) mg/L,(0.38±0.07) mg/L,(0.49±0.09) mg/L and (7.91±2.27) mg/L to (2.51±1.52) mg/L,(0.10±0.06) mg/L,(0.20±0.08) mg/L and (1.90±1.46) mg/L,respectively. TN concentration declined over 7.0 mg/L. The removal rates of TN,TP,NH+4-N,NO-3-N were 75.04%±9.02%,68.76%±15.81%,59.12%±13.37%,79.21%±13.91%,respectively. The average deceleration rates of nitrogen and phosphorus in the tailwater of three stage purification pond were (1 004.01±471.68) mg/(m2·d) and (38.25±9.56) mg/(m2·d),respectively. The nitrogen average deceleration rates in the tailwater of the first and second purification ponds were (1 069.99±276.94) mg/(m2·d) and (1 374.11±1 089.69) mg/(m2·d),respectively. And the phosphorus average deceleration rates in the tailwater of the first and second purification ponds were (74.93±15.99) mg/(m2·d) and (30.65±25.01) mg/(m2·d),respectively. The cumulative removal amount of nitrogen and phosphorus in the tail water by the purification pond was 1 100.02 kg and 40.36 kg. Nitrogen 218.52 kg and phosphorus 20.22 kg in the tailwater of sewage treatment plant were absorbed by Eichhornia crassipes through assimilation,accounting for 19.78% and 50.10% of total reduction of nitrogen and phosphorus in tail water. The comprehensive water quality identification index was used to calculate the effluent of the tail water from the sewage treatment plant and the deep purification pond. After deep purified by Eichhornia crassipes,the tail water reduced from class 5.322 to class 3.410,and reached the standard value of class Ⅲ of surface water.

参考文献/References:

[1]尹荣尧,周燕,朱晓东. 江苏省太湖水污染防治对策措施[J]. 环境保护科学,2010,36(3):93-95.
[2]许明,储时雨,蒋永伟,等. 太湖流域化工园区污水处理厂尾水人工湿地深度处理实验研究[J]. 水处理技术,2014,40(5):87-91.
[3]张利民,孙卫红,程炜,等. 太湖入湖河流水环境综合治理[J]. 环境监测管理与技术,2009,21(5):1-5.
[4]叶建春. 实施太湖流域综合治理与管理改善流域水环境[J]. 水利水电技术,2008(1):20-24.
[5]赵联芳,黄靖宇. 苏州太仓市污水处理厂尾水排放河道的治理[J]. 水资源保护,2015,31(1):63-68.
[6]常会庆,王浩. 城市尾水深度处理工艺及效果研究[J]. 生态环境学报,2015,24(3):457-462.
[7]孙迎雪,胡洪营,高岳,等. 城市污水再生处理反渗透系统RO浓水处理方式分析[J]. 给水排水,2014,50(7):36-42.
[8]孙迎雪,胡洪营,汤芳,等. 城市污水再生处理反渗透系统RO浓水的水质特征[J]. 环境科学与技术,2015,38(1):72-79.
[9]李宁. 小城镇污水生物处理方法的比较研究[D].扬州:扬州大学,2009.
[10]刘作云, 彭忆兰, 付美云. 3种常见水生植物对养殖废水中化学需氧量的去除效果[J].南方农业学报,2016,47(6):911-915.
[11]SALT D E,SMITH R D,RASKIN I. Phytoremediation [J]. Annual Reviews of Plant Physiology and Plant Molecular Biology,1998,49:643-668.
[12]董文斌, 何铁光, 蒙炎成, 等. 狐尾藻对养殖废水的减控去污效果[J].南方农业学报 ,2017,48(7):1204-1210.
[13]BATTY L C,DOLAN C. The potential use of phytoremediation for sites with mixed organic and inorganic contamination [J]. Critical Reviews in Environmental Science and Technology,2013,3(3):217-259.
[14]刘国锋,何俊,华伯仙,等.控养速生植物治理污染水体的研究进展[J].江苏农业科学,2017,45(21):1-6.
[15]刘丽珠,张志勇,宋伟,等. 凤眼莲净化塘与人工湿地组合工艺对养殖尾水的净化效能[J].江苏农业科学,2015,43(10):389-393.
[16]王妹,杜兴华,张金路,等.组合湿地系统对养殖尾水的净化效果[J].渔业现代化,2016,43(3):39-42.
[17]杨鹏,张克强,倪喜云,等.三级净化塘生态修复技术用于处理农业种养废水[J].中国给水排水,2013,29(8):87-90.
[18]闻学政,刘海琴,张迎颖,等. 凤眼莲和水浮莲对滇池草海水体中氮去除效果的比较研究[J]. 农业资源与环境学报,2015,32(4):388-394.
[19]张志勇,刘海琴,严少华,等. 水葫芦去除不同富营养化水体中氮、磷能力的比较[J]. 江苏农业学报,2009,25(5):1039-1046.
[20]张志勇,郑建初,刘海琴,等. 凤眼莲对不同程度富营养化水体氮磷的去除贡献研究[J]. 中国生态农业学报,2010,18(1):152-157.
[21]刘凤梅. 温度对凤眼莲浮岛净化效果影响的研究[J]. 环境保护科学,2013(3):9-11,54.
[22]夏倩,刘凌,王流通,等. 连续流动分析仪在水质分析中的应用[J]. 分析仪器,2012(2):64-68.
[23]沈建红,闫国利,曹雪英. AA3流动注射仪同时测定水中氨氮和氰化物[J]. 预防医学论坛,2012,18(6):441-442,445.
[24]李莉,李晓,肖溶,等. 高锰酸盐指数(酸性法)测定方法的探讨[J]. 河北农业科学,2009(8):165-166,170.
[25]鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000.
[26]曾永刚. 人工湿地对微污染水中污染物去除特征研究[D]. 重庆:重庆大学,2010.
[27]刘雯,丘锦荣,卫泽斌,等. 植物及其根系分泌物对污水净化效果的影响[J]. 环境工程学报,2009,3(6):971-976.
[28]徐祖信. 我国河流单因子水质标识指数评价方法研究[J]. 同济大学学报(自然科学版),2005,33 (3):321-325.
[29]徐祖信. 我国河流综合水质标识指数评价方法研究[J]. 同济大学学报(自然科学版),2005,33 (4):482-488.
[30]谷先坤,谷孝鸿,曾庆飞,等. 固城湖及其出入湖河道水质时空分布差异与历年变化趋势分析[J]. 生态与农村环境学报,2016,32 (1):68-75.
[31]杨红卫,王晓燕,李萍,等. 基于集对分析理论的南京市饮用水水源地水质评价[J]. 水电能源科学,2013(6):66-68.
[32]张迎颖,张志勇,王亚雷,等. 滇池不同水域凤眼莲生长特性及氮磷富集能力[J]. 生态与农村环境学报,2011,27(6):73-77.
[33]周喆. 水质条件对外来入侵生物水葫芦生长的影响[D].福州:福建农林大学,2008.
[34]XIE Y H,YU D. The significance of lateral roots in phosphorus (P) acquisition of water hyacinth (Eichhornia crassipes)[J]. Aquatic Botany,2003,75(4): 311-321.
[35]秦红杰,张志勇,刘海琴,等. 两种漂浮植物的生长特性及其水质净化作用[J]. 中国环境科学,2016,36(8):2470-2479.
[36]高岩,易能,张志勇,等. 凤眼莲对富营养化水体硝化、反硝化脱氮释放N2O的影响[J]. 环境科学学报,2012,32(2):349-359.
[37]马涛,易能,张振华,等. 凤眼莲根系分泌氧和有机碳规律及其对水体氮转化影响的研究[J]. 农业环境科学学报,2014,33(10):2003-2013.
[38]马涛,张振华,易能,等. 凤眼莲及底泥对富营养化水体反硝化脱氮特征的影响研究[J]. 农业环境科学学报,2013,32(12):2451-2459.
[39]吴湘,叶金云,杨肖娥,等. 生态浮岛植物在富营养化养殖水体中去磷途径的初步分析[J]. 水产学报,2011,35(6):905-910.
[40]梁威,吴振斌. 人工湿地对污水中氮磷的去除机制研究进展[J]. 环境科学动态,2000(3):32-37.
[41]冯海艳,李文霞,杨忠芳,等. 上覆水溶解氧水平对苏州城市河道底泥吸附/释放磷影响的研究[J]. 地学前缘,2008(5):227-234.
[42]黄廷林,周瑞媛,夏超,等. 氧化还原电位及微生物对水库底泥释磷的影响[J]. 环境化学,2014,33(6):930-936.
[43]汪家权,孙亚敏,钱家忠,等. 巢湖底泥磷的释放模拟实验研究[J].环境科学学报,2002,22(6):738-742.

相似文献/References:

[1]杨小杰,韩士群,唐婉莹,等.凤眼莲对铜绿微囊藻生理、细胞结构及藻毒素释放与削减的影响[J].江苏农业学报,2016,(02):376.[doi:10.3969/j.issn.1000-4440.2016.02.022]
 YANG Xiao-jie,HAN Shi-qun,TANG Wan-ying,et al.Physiological characteristics and cell structure of Microcystis aeruginosa and microcystin release and reduction in Eichhornia crassipes-grown water[J].,2016,(05):376.[doi:10.3969/j.issn.1000-4440.2016.02.022]
[2]周庆,王岩,宋伟,等.凤眼莲净化藻华养殖尾水过程中的潜在病原菌风险[J].江苏农业学报,2019,(02):340.[doi:doi:10.3969/j.issn.1000-4440.2019.02.014]
 ZHOU Qing,WANG Yan,SONG Wei,et al.Potential pathogen risk in cyanobacteria-blooming aquaculture wastewater after remediated by water hyacinth[J].,2019,(05):340.[doi:doi:10.3969/j.issn.1000-4440.2019.02.014]
[3]孙维民,秦红杰,张志勇,等.双氧水协同凤眼莲去除富营养化水体中高浓度蓝藻的效果[J].江苏农业学报,2023,(01):97.[doi:doi:10.3969/j.issn.1000-4440.2023.01.012]
 SUN Wei-min,QIN Hong-jie,ZHANG Zhi-yong,et al.Effect of hydrogen peroxide combined with Eichhornia crassipes on removal of high concentration cyanobacteria in eutrophic water[J].,2023,(05):97.[doi:doi:10.3969/j.issn.1000-4440.2023.01.012]

备注/Memo

备注/Memo:
收稿日期:2017-11-21 基金项目:江苏省农业科技自主创新基金项目[CX(16)1003-3]; 江苏省重点研发专项(BE2016338) 作者简介:闻学政(1986-),男,安徽天长人,硕士,助理研究员,主要从事污染水体生态修复研究,(E-mail)wenxuezheng1@163.com,宋伟为共同第一作者。 通讯作者:张志勇,(E-mail)jaaszyzhang@126.com
更新日期/Last Update: 2018-11-05