[1]郑曼迪,熊黑钢,乔娟峰,等.基于综合光谱指数的不同程度人类干扰下土壤有机质含量预测[J].江苏农业学报,2018,(05):1048-1056.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
 ZHENG Man-di,XIONG Hei-gang,QIAO Juan-feng,et al.Prediction of soil organic matter content based on comprehensive spectral index at different levels of human disturbance[J].,2018,(05):1048-1056.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
点击复制

基于综合光谱指数的不同程度人类干扰下土壤有机质含量预测()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年05期
页码:
1048-1056
栏目:
耕作栽培·资源环境
出版日期:
2018-10-25

文章信息/Info

Title:
Prediction of soil organic matter content based on comprehensive spectral index at different levels of human disturbance
作者:
郑曼迪1熊黑钢2乔娟峰1刘靖朝1
(1.新疆大学资源与环境科学学院/教育部绿洲生态重点实验室,新疆乌鲁木齐830046;2.北京联合大学应用文理学院,北京100083)
Author(s):
ZHENG Man-di1XIONG Hei-gang2QIAO Juan-feng1LIU Jing-chao1
(1.College of Resource and Environment Science, Xinjiang University/Key Laboratory of Oasis Ecdogy, Ministry of Education, Urumqi 830046, China;2.College of Art and Science, Beijing Union University, Beijing 100083, China)
关键词:
干旱区遥感高光谱土壤有机质估算模型
Keywords:
arid arearemote sensinghyperspectrumsoil organic matterestimating models
分类号:
F301.24
DOI:
doi:10.3969/j.issn.1000-4440.2018.05.012
文献标志码:
A
摘要:
为寻求同一背景不同人类干扰程度下的土壤有机质含量的最佳预测模型,本研究以天山北麓的土壤为研究对象,运用Landsat8遥感影像以及实测光谱2种方式进行对比,结合不同的综合光谱指数,对无人干扰区、人为干扰区的影像反射率和实测光谱反射率进行光谱变换,分析反射率及其变换形式与有机质含量的相关性,以相关系数通过0.01和0.05显著性水平检验的波段作为自变量,运用多元线性回归方程分别建立了无人干扰区、人为干扰区土壤有机质含量高光谱预测模型,精度最高的为最优模型。结果表明:(1)Landsat8影像中B1~B5波段与有机质含量的相关系数通过了0.01与0.05显著性水平检验,作为自变量建立有机质含量预测模型。同时,为了能与影像反射率有个良好的对比,实测光谱反射率及其变换形式同样也选择5个相关系数最大的波段作为敏感波段用以建立模型。在影像与实测光谱中,土壤盐分指数结合植被指数与有机质含量相关性最好的分别是无人干扰区的SI3、DVI和SI3、RVI;人为干扰区的SI2、RVI和SI1、RVI。在结合光谱综合指数的模型中,无论是影像还是实测光谱,都是以反射率与植被指数、盐分指数相结合作为自变量建立的模型精度最好。对比2种预测方式,预测效果最好的是利用实测光谱与盐分指数、植被指数建立的无人干扰区一阶微分的多元线性回归模型以及人为干扰区的倒数之对数一阶微分的多元线性回归模型,R2分别为0.93和0.89。
Abstract:
To build the best prediction model of the soil organic matter contentunder the same background at different levels of human disturbance, using the soil of Fukang as the research object, Landsat8 remote sensing image and the measured spectra were used for comparison, and combined with different comprehensive spectral index to do spectral transformation between the image reflectance and the measured spectral reflectance. The correlation between reflectivity and its transformation and organic matter content was analyzed, the band with correlation coefficient through the significant test at 0.01 and 0.05 level was used as independent variable, the multivariate linear regression equations were used to establish high spectral prediction model of soil organic matter content. The results showed that the correlation coefficients of B1-B5 bands and organic matter content in Landsat8 images were tested at 0.01 and 0.05 significance level, and the bands were used as the independent variable to establish organic matter content prediction model. In order to form a good contrast with the results of image reflectivity, the five bands with the largest correlation coefficent were also selected as sensitive bands to establish prediction models of the measured spectral reflectance and its transformation form. The best correlation between soil salinity index combined with vegetation index and organic matter was SI3, DVI and SI3, RVI in the undisturbed zone, SI2, RVI, and SI1, RVI in human interference area. The model established by using reflectivity combined with vegetation index and salinity index as the independent variable had the best precision. The first order differential multivariate linear regression model established by measured spectrum and salinity index, vegetation index in unmanned interference area and first order differential multivariate linear regression model of the reciprocal in artificial interference region had best prediction effect, values of R2 were 0.93 and 0.89, respectively.

参考文献/References:

[1]武志杰. 人类生产活动对土壤生态系统的影响[J].生态学杂志,1993,12(4):47-51.
[2]童庆禧,张兵,郑兰芬. 高光谱遥感原理技术与应用[M].北京:高等教育出版社,2006.
[3]丁建丽,伍漫春,刘海霞,等.基于综合高光谱指数的区域土壤盐渍化监测研究[J].光谱学与光谱分析,2012,32(7):1918-1922.
[4]曹文涛,康日斐,王集宁,等. 基于高光谱遥感的土壤氯化钠含量监测[J]. 江苏农业学报,2016,32(4):817-823.
[5]张娟娟,田永超,姚霞,等.同时估测土壤全氮、有机质和速效氮含量的光谱指数研究[J].土壤学报,2012,49(1):50-59.
[6]李相,丁建丽.基于实测高光谱指数与HSI影像指数的土壤含水量监测[J].农业工程学报,2015,31(19):68-75.
[7]张佳佳,郭熙,赵小敏.南方丘陵稻田土壤全磷、有效磷高光谱特征与反演模型[J]. 江苏农业科学,2016,44(7):522-525.
[8]刘庆生,张敏,宁吉才,等.翅碱蓬高光谱植被指数对土壤化学性质的响应[J].地理与地理信息科学,2011,27(3):86-89,104.
[9]张林静,岳明,张远东,等.新疆阜康绿洲荒漠过渡带植物群落物种多样性特征[J].地理科学,2003,23(3):329-334.
[10]姚峰,古丽·加帕尔,包安明,等.基于遥感技术的干旱荒漠区露天煤矿植被群落受损评估[J].中国环境科学,2013,33(4):707-713.
[11]KHAN N M,RASTOSKUEV V,SATO Y,et al. Assessment of Hydrosaline Land degradation by using a simple approach of remote sensing indicators[J]. Agricultural Water Management,2005,77:96-109.
[12]INAKWU O A ODEH,ALEX ONUS. Spatial Analysis of Soil Salinity and Soil Structural Stability in a Semiarid Region of New South Wales, Australia[J]. Environmental Management,2008, 42(2):65-78
[13]陈红艳,赵庚星,陈敬春,等.基于改进植被指数的黄河口区盐渍土盐分遥感反演[J].农业工程学报,2015,31(5):107-114.
[14]李萍,赵庚星,高明秀,等.黄河三角洲土壤含水量状况的高光谱估测与遥感反演[J].土壤学报,2015,52(6):1262-1272.
[15]VISCARRA R V,MCGLYN R N,MCBRATNEY A B.Determining the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy[J].Geoderma,2006,137(1/2):70-82.
[16]何挺,王静,林宗坚,等.土壤有机质光谱特征研究[J].武汉大学学报(信息科学版),2006,31(11):975-979.
[17]浦瑞良,宫鹏. 高光谱遥感及其应用[M]. 北京:高等教育出版社,2003.
[18]苏红军,杜培军,盛业华.高光谱遥感数据光谱特征提取算法与分类研究[J].计算机应用研究,2008,25(2):390-394.
[19]陈祯.不同土壤含水量、体积质量与光谱反射率的关系模型[J].农业工程学报,2012,28(4):76-81.
[20]杜培军,陈云浩,方涛,等.高光谱遥感数据光谱特征的提取与应用[J].中国矿业大学学报,2003,32(5):34-38.
[21]梁雪,吉海彦,王鹏新,等.用MSC-ANN方法建立冬小麦叶片叶绿素与反射光谱的定量分析模型研究[J].光谱学与光谱分析,2010,30(1): 188-191.
[22]刘焕军,赵春江,王纪华,等.黑土典型区土壤有机质遥感反演[J].农业工程学报,2011,27(8):211-215.

相似文献/References:

[1]田苗,王鹏新.降水温度指数及其在旱涝灾害监测中的应用[J].江苏农业学报,2016,(04):810.[doi:10.3969/j.issn.100-4440.2016.04.016]
 TIAN Miao,WANG Peng-xin.Precipitation-temperature index and its application in drought and flood disasters monitoring[J].,2016,(05):810.[doi:10.3969/j.issn.100-4440.2016.04.016]
[2]顾军,于堃,张腾,等.基于信息技术的财政支农项目监管方法[J].江苏农业学报,2015,(01):197.[doi:10.3969/j.issn.1000-4440.2015.01.031]
 GU Jun,YU Kun,ZHANG Teng,et al.Supervision of goverment finance-supported agricultural projects using information technology in Jiangsu province[J].,2015,(05):197.[doi:10.3969/j.issn.1000-4440.2015.01.031]
[3]单捷,邱琳,孙玲,等.基于Radarsat-2的水稻种植面积提取[J].江苏农业学报,2017,(03):561.[doi:doi:10.3969/j.issn.1000-4440.2017.03.012]
 SHAN Jie,QIU Lin,SUN Ling,et al.Paddy rice planting area extraction based on Radarsat-2 data[J].,2017,(05):561.[doi:doi:10.3969/j.issn.1000-4440.2017.03.012]
[4]于堃,单捷,王志明,等.无人机遥感技术在小尺度土地利用现状动态监测中的应用[J].江苏农业学报,2019,(04):853.[doi:doi:10.3969/j.issn.1000-4440.2019.04.015]
 YU Kun,SHAN Jie,WANG Zhi ming,et al.Land use status monitoring in small scale by unmanned aerial vehicles (UAVs) observations[J].,2019,(05):853.[doi:doi:10.3969/j.issn.1000-4440.2019.04.015]
[5]孙玲,单捷,卢必慧,等.江苏省水稻主产区水稻种植调减模式遥感监测[J].江苏农业学报,2020,(04):911.[doi:doi:10.3969/j.issn.1000-4440.2020.04.015]
 SUN Ling,SHAN Jie,LU Bi-hui,et al.Remote sensing monitoring of rice plantation reduction model in main rice production areas of Jiangsu province[J].,2020,(05):911.[doi:doi:10.3969/j.issn.1000-4440.2020.04.015]
[6]孙玲,邱琳,单捷,等.2011-2019年江苏省水稻主产区规模连片水稻时空动态分析[J].江苏农业学报,2021,(02):355.[doi:doi:10.3969/j.issn.1000-4440.2021.02.011]
 SUN Ling,QIU Lin,SHAN Jie,et al.Analysis on the spatiotemporal dynamics of rice planted in a large scale contiguously in the main production area of Jiangsu province from 2011 to 2019[J].,2021,(05):355.[doi:doi:10.3969/j.issn.1000-4440.2021.02.011]
[7]卢必慧,邱琳,李卫国,等.基于遥感的作物产量和产量差估算研究进展[J].江苏农业学报,2023,(03):881.[doi:doi:10.3969/j.issn.1000-4440.2023.03.030]
 LU Bi-hui,QIU Lin,LI Wei-guo,et al.Research progress on crop yield and yield gap estimation based on remote sensing[J].,2023,(05):881.[doi:doi:10.3969/j.issn.1000-4440.2023.03.030]
[8]张代维,马友华,吴雷,等.基于文献计量的农作物种植结构遥感提取发展态势分析[J].江苏农业学报,2023,(04):1026.[doi:doi:10.3969/j.issn.1000-4440.2023.04.012]
 ZHANG Dai-wei,MA You-hua,WU Lei,et al.Development situation analysis of remote sensing extraction of crop planting structure based on bibliometrics[J].,2023,(05):1026.[doi:doi:10.3969/j.issn.1000-4440.2023.04.012]
[9]顾余庆,李晓文,曹伟,等.基于Segformer网络的地块尺度作物种植结构精细化识别与分类[J].江苏农业学报,2024,(02):293.[doi:doi:10.3969/j.issn.1000-4440.2024.02.011]
 GU Yu-qing,LI Xiao-wen,CAO Wei,et al.Refined identification and classification of crop planting structure at plot scale based on Segformer network[J].,2024,(05):293.[doi:doi:10.3969/j.issn.1000-4440.2024.02.011]
[10]李瑞鑫,张宝林,潘丽杰,等.不同无人机飞行高度下玉米叶片叶绿素相对含量的无人机遥感反演及其指示叶位的识别[J].江苏农业学报,2024,(07):1234.[doi:doi:10.3969/j.issn.1000-4440.2024.07.010]
 LI Ruixin,ZHANG Baolin,PAN Lijie,et al.Unmanned aerial vehicle remote sensing inversion of relative chlorophyll content of maize leaves and identification of their indicator leaf at different flight altitudes[J].,2024,(05):1234.[doi:doi:10.3969/j.issn.1000-4440.2024.07.010]

备注/Memo

备注/Memo:
收稿日期:2017-12-06 基金项目:国家自然科学基金项目(41671198) 作者简介:郑曼迪(1993-),女,新疆乌鲁木齐人,硕士研究生,主要研究方向为干旱区资源与环境研究。( Email)762820677@qq.com 通讯作者:熊黑钢,(Email)heigang@buu.edu.cn
更新日期/Last Update: 2018-11-05