[1]苏一钧,王娇,霍恺森,等.甘薯引进种SSR遗传多样性分析[J].江苏农业学报,2018,(05):984-997.[doi:doi:10.3969/j.issn.1000-4440.2018.05.004]
 SU Yi-jun,WANG Jiao,HUO Kai-sen,et al.Genetic diversity analysis of introduced sweetpotato germplasm collections[J].,2018,(05):984-997.[doi:doi:10.3969/j.issn.1000-4440.2018.05.004]
点击复制

甘薯引进种SSR遗传多样性分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年05期
页码:
984-997
栏目:
遗传育种·生理生化
出版日期:
2018-10-25

文章信息/Info

Title:
Genetic diversity analysis of introduced sweetpotato germplasm collections
作者:
苏一钧1王娇1霍恺森2赵路宽1赵冬兰1唐君1陈艳丽2曹清河1
(1.江苏徐淮地区徐州农业科学研究所/中国农业科学院甘薯所,江苏徐州221131;2.海南大学热带农林学院,海南海口570228)
Author(s):
SU Yi-jun1WANG Jiao1HUO Kai-sen2ZHAO Lu-kuan1ZHAO Dong-lan1TANG Jun1CHEN Yan-li2CAO Qing-he1
(1.Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou 221131, China;2.Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China)
关键词:
甘薯引进种SSR遗传多样性群体结构
Keywords:
introduced sweetpotato germplasmSSRgenetic diversitypopulation structure
分类号:
S531.024
DOI:
doi:10.3969/j.issn.1000-4440.2018.05.004
文献标志码:
A
摘要:
通过SSR分子标记,对112份甘薯引进种进行了遗传多样性和群体结构分析,并与中国地方种进行了聚类比较分析。研究了中国目前保存最多的甘薯引进种间的遗传多样性和亲缘关系,以及与地方种间的遗传多样性关系。用SSR建立研究材料的0,1数据库,用ntsys-pc 2.10软件计算遗传距离矩阵并导入MEGA 6.06聚类,利用STRUCTURE 2.3.4软件对112份引进种进行群体结构分析,并将112份引进种与58份中国地方种共170份进行聚类分析。结果表明:112份材料的平均遗传距离为0.552,遗传距离分布在0.031到0.949范围之内。使用Neighbor-Joining (NJ)聚类法,在遗传距离为0.442处将112份材料分成9个类群,其中类群9又在遗传距离为0.428处,分为3个亚群。亚群ⅨC含有39份材料,该亚群主要来自南美洲,聚类集中,血缘较为单一。通过群体结构分析将112份材料划分成了2个群体,通过对引进种的来源地比较分析,发现来自南美洲与其他地区种质材料分属于2个群体。通过对引进种和地方种共计170份甘薯资源聚类比较分析,发现中国大陆地方种与中国台湾品种间亲缘关系最近,与东南亚、东北亚、南美洲甘薯引进种间亲缘关系较近,与国际马铃薯中心、国际热带农业研究所的材料和世界蔬菜中心的材料亲缘关系较远。
Abstract:
To understand the genetic relationship among introduced sweetpotato germplasm collections and landraces sweetpotato, genetic diversity and population structure of 112 introduced sweetpotato germplasm collections were analyzed with SSR markers. The 0,1 database of the test materials was established by SSR markers. The ntsys-pc 2.10 software was used to calculate the genetic distance matrix. The genetic distance matrix was imported into MEGA 6.06 to output cluster analysis. The population structure of 112 introduced species was analyzed using STRUCTURE 2.3.4 software, and the duster analysis was performed on 12 introduced species and 58 landraces. The results showed that the average genetic distance of 112 accessions was 0.552, and the genetic distance ranged from 0.031 to 0.949. Neighbor-Joining (NJ) cluster analysis could divide 112 accessions into nine groups at 0.442 genetic distance. Among them, the ninth group was divided into three subgroups at 0.428 genetic distance. Subgroup ⅨC contained 39 materials, and the main source of this subgroup was South America. The clustering of these sweetpotato germplasm collections was concentrated and the blood was comparatively simple. By analysis of population structure, the 112 materials were divided into two groups. Based on the comparative analysis of the origin of introduced species, it was found that germplasm originating from South America and other regions belonged to two groups. Through the cluster analysis of 170 sweetpotato germplasm resources, it was found that the genetic relationship between sweetpotato landraces and sweetpotato in Taiwan was closest, and the genetic relationship betweent landraces and sweetpotato introduced from Southeast Asia, Northeast Asia and South America was closer, but the landraces were for from the stweetpotato introduced from International Potato Center, World Vegetable Center.

参考文献/References:

[1]FAOSTAT. Food and agricultural organization from the United Nations[EB/OL]. (2016)
[2018-02-01]. http: //www.fao.org/faostat/en/#data/QC.
[2]盛家廉,袁宝忠,邬景禹,等. 我国甘薯品种资源研究现状[J]. 作物品种资源, 1983, 2(40): 2-7.
[3]KHOURY C K, HEIDER B, CASTANEDA-ALVAREZ N P, et al. Distributions, ex situ conservation priorities, and genetic resource potential of crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas] [J]. Frontiers in Plant Science, 2015, 4(6): 251.
[4]贺学勤. 中国甘薯地方品种的遗传多样性分析[D]. 北京:中国农业大学, 2004.
[5]ZHANG D, ROSSEL G, KRIEGNER A, et al. AFLP assessment of diversity in sweetpotato from Latin America and the Pacific region: Its implications on the dispersal of the crop [J]. Genetic Resources and Crop Evolution, 2004,51(2): 115-120.
[6]JARRET R L , AUSTIN D F. Genetic diversity and systematic relationships in sweetpotato [Ipomoea batatas (L.) Lam.] and related species as revealed by RAPD analysis [J]. Genetic Resources and Crop Evolution,1994, 41(3): 165-173.
[7]JARRET R L, GAWEL N, WHITTEMORE A. Phylogenetic relationships of the sweetpotato [Ipomoea batatas (L.) Lam.] journal of the american society for horticultural science [J]. Genetic Resources and Crop Evolution, 1992,117(4): 633.
[8]罗凯,卢会翔,吴正丹,等.中国西南地区甘薯主要育种亲本的遗传多样性及群体结构分析[J]. 中国农业科学, 2016,49(3): 593-608.
[9]ZAWEDDE B M, GHISLAIN M, MAGEMBE E, et al. Characterization of the genetic diversity of Uganda’s sweet potato (Ipomoea batatas) germplasm using microsatellites markers [J]. Genetic Resour Crop Evol,2015, 62(4): 501-513.
[10]苏一钧,王娇,戴习彬,等. 303份甘薯地方种SSR遗传多样性与群体结构分析 [J].植物遗传资源学报, 2018,19(2): 202-210.
[11]ZHAO N, YU X X, JIE Q, et al. A genetic linkage map based on AFLP and SSR markers and mapping of QTL for dry-matter content in sweetpotato[J]. Molecular Breeding, 2013, 32(4): 807-820 .
[12]LETUNIC I, BORK P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees [J].Nucleic Acids Res, 2016,8(44): 242-245.
[13]EVANNO G, REGNANT S, GOUDET J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study[J]. Molecular Ecology, 2005,14(8): 2611-2620.
[14]吴承来,张倩倩,董炳雪,等.我国部分玉米自交系遗传关系和遗传结构解析[J].作物学报, 2010, 36(11): 1820-1831.
[15]ROULLIER C, BENOIT L, MCKEY D B, et al. Historical collections reveal patterns of diffusion of sweet potato in Oceania obscured by modern plant movements and recombination [J]. PNAS, 2013, 110(6): 2205-2210.

相似文献/References:

[1]王为,叶泗洪,潘宗瑾,等.棉花分子标记冗余性检测与评价的方法[J].江苏农业学报,2015,(02):247.[doi:10.3969/j.issn.1000-4440.2015.02.004]
 WANG Wei,YE Si-hong,PAN Zong-jin,et al.An approach to detecting and evaluating molecular marker redundancy in cotton[J].,2015,(05):247.[doi:10.3969/j.issn.1000-4440.2015.02.004]
[2]陈春林,田易萍,陈林波,等.基于荧光标记的紫娟茶树转录组EST-SSR标记开发[J].江苏农业学报,2018,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
 CHEN Chun-lin,TIAN Yi-ping,CHEN Lin-bo,et al.EST-SSR marker development of Zijuan tea tree transcriptome based on the fluorescent labeling[J].,2018,(05):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
[3]贺丹,吴芳芳,张佼蕊,等.牡丹转录组SSR信息分析及其分子标记开发[J].江苏农业学报,2019,(06):1428.[doi:doi:10.3969/j.issn.1000-4440.2019.06.023]
 HE Dan,WU Fang-fang,ZHANG Jiao-rui,et al.Analysis of SSR information in transcriptome and development of molecular markers in Paeonia suffruticosa[J].,2019,(05):1428.[doi:doi:10.3969/j.issn.1000-4440.2019.06.023]

备注/Memo

备注/Memo:
收稿日期:2018-02-05 基金项目:国家自然科学基金项目(31461143017、31371681);现代农业产业技术体系专项资金项目(CARS 2017-11-B-02);国家农作物种质资源平台徐州甘薯子平台项目(NICGR-062) 作者简介:苏一钧(1991-),男,山西忻州人,硕士研究生,主要从事作物种质资源与生物技术研究。(E-mail)642081290@qq.com 通讯作者:曹清河,(E-mail)cqhe75@yahoo.com;caoqinghe@jaas.ac.cn
更新日期/Last Update: 2018-11-05