[1]丁承君,刘强,田军强,等.信息物理系统事件驱动下的农业气象监测系统[J].江苏农业学报,2018,(04):825-834.[doi:doi:10.3969/j.issn.1000-4440.2018.04.016]
 DING Cheng-jun,LIU Qiang,TIAN Jun-qiang,et al.Agro-meteorological monitoring system based on event-driven modeling of cyber-physical system[J].,2018,(04):825-834.[doi:doi:10.3969/j.issn.1000-4440.2018.04.016]
点击复制

信息物理系统事件驱动下的农业气象监测系统()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年04期
页码:
825-834
栏目:
耕作栽培·资源环境
出版日期:
2018-08-25

文章信息/Info

Title:
Agro-meteorological monitoring system based on event-driven modeling of cyber-physical system
作者:
丁承君1刘强12田军强1朱雪宏12
(1. 河北工业大学机械学院,天津300130;2.泰华宏业(天津)机器人技术研究院有限责任公司,天津300130 )
Author(s):
DING Cheng-jun1LIU Qiang12TIAN Jun-qiang1ZHU Xue-hong12
(1.School of Mechanical Engineering, Hebei University of Technology,Tianjin 300130, China;2.Taihua Hongye (Tianjin) Robot Technology Research Institute Co., Ltd., Tianjin 300130, China)
关键词:
信息物理系统农业气象事件驱动边缘设备MQTT协议卷积神经网络
Keywords:
cyber-physical systemagricultural meteorologyevent-dirvenedge deviceMQTT protocolconvolutional neural netword
分类号:
S165+.2
DOI:
doi:10.3969/j.issn.1000-4440.2018.04.016
文献标志码:
A
摘要:
针对传统农业气象观测和当前传感器技术存在的不足,设计了一套基于信息物理系统(Cyber-physical system,CPS)的气象远程监测系统。针对信息物理系统时空特性,基于节点事件驱动方法,建立了3层信息物理系统模型,并给出了时空事件建模方法。该系统由边缘设备负责感知,云平台负责计算,通过事件-行为模式保证时空同步性,实现了气象信息采集、传输和处理的高度集成,同时在网络边缘处应用卷积神经网络实现设备电量识别以自适应采集频率。通过在河北工业大学测试点开展的采集试验和系统模型试运行结果表明,系统表现出较好的实时性、稳定性和时空同步性,农业气象信息的采集、传输、处理和远程监控等各项功能均可满足各级用户需求。
Abstract:
In view of the shortcomings of traditional agricultural meteorological observation and current sensor technology, a set of meteorological remote monitoring system based on cyber-physical system(CPS) was designed. In view of the temporal and spatial characteristics of CPS, a three layer CPS model was established based on the node event-driven method and spatiotemporal event modeling method was put out. In this system, edge device was responsible for perception and cloud platform was responsible for the calculation. The system ensured concurrency in time and space by event-behavior model and completed the integration of acquisition, transmission and processing of meteorological information. Moreover, at the edge of the network, convolutional neural network was used to identify the system power and adaptively change the sampling frequency to minimize energy consumption of the system . The experiment and system model test run results at the test site of Hebei university of technology showed that the system had good real-time, stability and spatiotemporal synchronization. Besides, the functions of acquisition, transmission, processing and remote monitoring of agricultural meteorology can meet the needs of users at all levels.

参考文献/References:

[1]王春乙,张继权,霍治国,等. 农业气象灾害风险评估研究进展与展望[J]. 气象学报, 2015, 73(1):1-19.
[2]武永峰,宫志宏,刘布春,等. 基于远程监控的农业气象自动采集系统设计[J]. 农业机械学报, 2010, 41(10):174-179.
[3]曹宏鑫,葛道阔,曹静,等. “互联网+”现代农业的理论分析与发展思路探讨[J]. 江苏农业学报, 2017, 33(2):314-321.
[4]纪建伟,赵海龙,李征明,等. 基于STM32的温室CO2浓度自动调控系统设计[J]. 浙江农业学报, 2015, 27(5):860-864.
[5]韩怀阳,王俊飞. 虚拟仪器技术的农田气象信息远程监测系统开发探析[J]. 气象研究与应用, 2015, 36(2):78-81,84.
[6]HARTUNG C, HAN R, SEIELSTAD C, et al. FireWxNet: a multitiered portable wireless system for monitoring weather conditions in wildland fire environments[C]. New York:ACM, 2006:28-41.
[7]郭志伟,张云伟,李霜,等. 基于GSM的农田气象信息远程监控系统设计[J]. 农业机械学报, 2009, 40(3):161-166.
[8]廖建尚. 基于物联网的温室大棚环境监控系统设计方法[J]. 农业工程学报, 2016, 32(11):233-243.
[9]叶宏宝,徐志福,石晓燕,等. 设施农业环境智能监控管理平台设计与实现[J]. 浙江农业学报, 2014, 26(2):467-472.
[10]周兴社,杨亚磊,杨刚. 信息-物理融合系统动态行为模型构建方法[J]. 计算机学报, 2014, 37(6):1411-1423.
[11]LIU Z, LIU J, HE J, et al. Spatio-temporal UML Statechart for Cyber-physical Systems[C]. Piscataway:IEEE, 2012: 137-146.
[12]TAN Y, VURAN M C, GODDARD S, et al. A concept lattice-based event model for cyber-physical systems[C]. New York : ACM, 2010: 50-60.
[13]MA Z FU X, YU Z. Object-oriented Petri nets based formal modeling for high-confidence cyberphysical systems[C]. Shanghai:Networking and Mobile Computing, 2012:1-4.
[14]王浩云,刘佼佼,侯思宇,等. 信息物理系统(Cyber-physical system)时空建模方法及在温室控制中的应用[J]. 农业工程学报, 2015, 31(15):183-190.
[15]王云,刘东,陆一鸣. 电网信息物理系统的混合系统建模方法研究[J]. 中国电机工程学报, 2016, 36(6):1464-1470.
[16]PATRICIA D, EDWARD A L. Alberto sangiovanni vincentelli.Modeling cyber-physical systems [J]. Proceedings of the IEEE, 2012, 100:13-28 .
[17]KIM S M, CHOI H S, RHEE W S. Iot home gateway for auto-configuration and management of MQTT devices[C]. Piscataway:IEEE, 2015: 12-17.
[18]LE CUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to hand-written zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551.
[19]ABDEL-HAMID O, MOHAMMED A, JIANG H, et al. Convolutional neural networks for speech recognition [J]. IEEE/ACM Transactions on Audio Speech & Language Processing, 2014 , 22(10):1533 -1545.
[20]常亮,邓小明,周明全,等. 图像理解中的卷积神经网络[J]. 自动化学报, 2016, 42(9):1300-1312 .
[21]ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks [C]. Berlin: Springer, 2014:818-833 .
[22]SILVERD, HUANGA, MADDISON C J, et al. Mastering the game of go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489.

备注/Memo

备注/Memo:
收稿日期:2017-10-25 基金项目:天津市科技支撑计划项目(15ZXHLGX00210);天津市产学研合作项目(14ZCZDSF00025);天津市“863”成果转化项目(14RCHZGX00862) 作者简介:丁承君(1973-),男,河北馆陶人,博士,教授,研究方向为嵌入式控制和物联网技术。(E-mail) dcj@hebut.edu.cn 通讯作者:刘强,(Tel)15620693227;(E-mail)lqhebut@foxmail.com
更新日期/Last Update: 2018-09-04