[1]许正荣,王文周,辜丽川,等.基于轨迹跟踪的农用履带机器人自适应滑模控制[J].江苏农业学报,2018,(03):711-720.[doi:doi:10.3969/j.issn.1000-4440.2018.03.034]
 XU Zheng-rong,WANG Wen-zhou,GU Li-chuan,et al.Adaptive sliding mode control for agricultural tracked robot based on trajectory tracking[J].,2018,(03):711-720.[doi:doi:10.3969/j.issn.1000-4440.2018.03.034]
点击复制

基于轨迹跟踪的农用履带机器人自适应滑模控制()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年03期
页码:
711-720
栏目:
农业工程
出版日期:
2018-06-25

文章信息/Info

Title:
Adaptive sliding mode control for agricultural tracked robot based on trajectory tracking
作者:
许正荣王文周辜丽川乔焰褚刚秀焦俊
(安徽农业大学信息与计算机学院,安徽合肥230036)
Author(s):
XU Zheng-rongWANG Wen-zhouGU Li-chuanQIAO YanCHU Gang-xiuJIAO Jun
(School of Information and Computer, Anhui Agricultural University, Hefei 230036, China)
关键词:
机器人滑模控制运动学自适应位姿误差积分滑模面
Keywords:
robotsliding mode control (SMC)kinematicsadaptiveposition and orientation errorintegral sliding surface
分类号:
S24,TP242.6
DOI:
doi:10.3969/j.issn.1000-4440.2018.03.034
文献标志码:
A
摘要:
为了提高农用履带机器人轨迹跟踪控制的性能,在履带机器人运动学模型的基础上,设计了自适应滑模控制,构建了一种变倾斜参数的自适应积分滑模切换函数,基于这个函数提出了由等效控制和切换控制组成的自适应滑模跟踪控制,将机器人的位姿误差,以及在线辨识的时变不确定参数反馈至控制器中,计算出左右轮驱动电机的期望角速度,同时利用李亚普诺夫方法证明了所设计滑模跟踪控制的稳定性。田间试验结果表明,当机器人以1~4 m/s速度运行时,在运动方向距离误差、侧向距离误差和航向角的误差分别为-0.04~0.04 m,-0.09~0.07 m和-0.03~0.05 rad。因此,机器人自适应滑模控制具有良好的控制精度,能够满足田间实际作业的要求。
Abstract:
To improve the performance of trajectory tracking control for agricultural tracked robot(ATR), on the basis of the dynamic characteristics of kinematics model, a sliding mode control module and an integral sliding mode switching function (ISMSF) were proposed. Furthermore, an adaptive sliding mode trajectory tracking control (ASMTTC) was developed based on ISMSF, which was composed of equivalent control and nonlinear switch control. The ASMTTC could feed back the position and orientation error and the time-varying parameters to the controller, so the expected angular velocities of the left and right driving wheels could be calculated. Finally, the stability of ASMTTC was proved by Lyapunov method. The results showed that: when the ATR ran at speed of 1-4 m/s, the tracking error for ATR ranged from -0.04 m to 0.04 m, from -0.09 m to 0.07 m in the direction of motion and lateral distance, respectively, and heading error ranged from -0.03 rad to 0.05 rad. In conclusion, the ASMTTC of robot had good control accuracy and can meet the requirements of field operation.

参考文献/References:

[1]焦俊,陈无畏,王继先,等. 基于GA和LS-SVM的AGV变结构控制[J].系统仿真学报,2008,20(14):3777-3781.
[2]TEMEL T, ASHRAFIUON H. Sliding mode speed controller for tracking of under actuated surface vessels with extended kalman filter[J]. Electronics Letters, 2015, 51(6): 467-269.
[3]BLAZIC S. A noval trajectory tracking control law for wheeled mobile robots[J]. Robotics and Autonomous Systems, 2011, 59(11): 1001-1007.
[4]焦俊,江朝晖,金瑞春,等.农用机器人转向系统自适应内模控制[J].农业机械学报,2011,42(10):186-191,234.
[5]ASIF M, KHAN M J, CAI N. Adaptive sliding mode dynamic controller with integrator in the loop for nonholonomic wheeled mobile robot trajectory tracking[J]. International Journal of Control, 2014, 87(5): 964-975.
[6]焦俊,孔文,王强,等. 基于输入模糊化的农用履带机器人自适应滑模控制[J]. 农业机械学报,2015,46(6):14-19,13.
[7]熊中刚,叶振环,贺娟,等. 基于免疫模糊 PID 的小型农业机械路径智能跟踪控制[J]. 机器人,2015,37(2):212-223.
[8]郑泽伟,霍伟,诸兵. 非完整移动机器人全局路径跟踪控制[J]. 控制理论与应用,2012,29(6):741-746.
[9]CHEN C Y, LI T H S, YEH Y C, et al. Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots[J]. Mechatronics, 2009, 19(2): 156-166.
[10]白晓平,胡静涛,高雷,等. 农机导航自校正模型控制方法研究[J]. 农业机械学报,2015,46(2):1-7.
[11]GHASEMI M, NERSESOV S G, CLAYTON G. Sliding mode coordination control for multiagent systems with under actuated agent dynamics[J]. International Jouranl of Control, 2014, 97(12): 2615-2633.
[12]焦俊,汪宏喜,陈祎琼,等. 基于UKF的农用履带机器人滑动参数的估计[J]. 农业机械学报,2014,45(4):55-60.
[13]CHEN X Q, LI J T. Sliding mode control for uncertain unified chaotic systems with nonlinear inputs[J]. Journal of Control Engineering, 2017, 24(1): 239-242.
[14]WANG Z Y, LI Y D, ZHU L. Dual adaptive neural sliding mode control of non-holonomic mobile robot[J]. Journal of Mechanical Engineerin, 2010, 46(23): 16-22.
[15]ZUO Z Y. Non-singular fixed-time terminal sliding model control of nonlinear systems[J]. Control Theory and Applications, 2015, 9(4): 545-552.
[16]XU S D, CHEN C C, WU Z L. Study of nonsingular fast terminal sliding mode fault tolerant control[J]. IEEE Trans on Industrial Electronics, 2015, 62(6): 3906-3913.
[17]MOSTASHFI A, FAKHARI A, MOHAMMAD A B. A novel design of inspection robot for high-voltage power lines[J].Industrial Robot An International Journal,2014,41(2):166-175.
[18]高为炳. 变结构控制的理论及设计方法[M]. 北京:科学出版社,1996:34-36.

相似文献/References:

[1]周康乾,姜树海,李存.农林业机器人轨迹规划研究进展[J].江苏农业学报,2024,(09):1758.[doi:doi:10.3969/j.issn.1000-4440.2024.09.020]
 ZHOU Kangqian,JIANG Shuhai,LI Cun.Research progress on trajectory planning of agroforestry robots[J].,2024,(03):1758.[doi:doi:10.3969/j.issn.1000-4440.2024.09.020]

备注/Memo

备注/Memo:
收稿日期:2018-03-11 基金项目:国家自然科学基金项目(31671589、31371533、3177167);安徽省重大攻关项目(15czz03131、16030701092);安徽省高校自然科学研究重点项目(kJ2016A836、KJ2018A0145) 作者简介:许正荣(1974-),女,安徽合肥人,硕士,讲师,主要从事物联网与通信研究。(E-mail)31321832@qq.com 通讯作者:焦俊,(E-mail)jiaojun2000@sina.com
更新日期/Last Update: 2018-07-04