[1]刘青涛,李银,刘娜,等.H9N2亚型禽流感病毒对鸡的免疫抑制机制[J].江苏农业学报,2018,(02):368-373.[doi:doi:10.3969/j.issn.1000-4440.2018.02.021]
 LIU Qing-tao,LI Yin,LIU Na,et al.The immunosuppressive mechanism of H9N2 subtype avian influenza virus infection in chickens[J].,2018,(02):368-373.[doi:doi:10.3969/j.issn.1000-4440.2018.02.021]
点击复制

H9N2亚型禽流感病毒对鸡的免疫抑制机制()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年02期
页码:
368-373
栏目:
畜牧兽医·水产养殖
出版日期:
2018-04-25

文章信息/Info

Title:
The immunosuppressive mechanism of H9N2 subtype avian influenza virus infection in chickens
作者:
刘青涛1李银1刘娜12杨婧1韩凯凯1刘宇卓1赵冬敏1黄欣梅1田宇杰13
(1.江苏省农业科学院兽医研究所/农业部动物疫病诊断与免疫重点开放实验室/国家兽用生物制品工程技术研究中心,江苏南京210014;2.南京农业大学动物医学院, 江苏南京210095;3.贵州大学动物科学学院,贵州贵阳550025)
Author(s):
LIU Qing-tao1LI Yin1LIU Na12YANG Jing1HAN Kai-kai1LIU Yu-zhuo1ZHAO Dong-min1HUANG Xin-mei1TIAN Yu-jie13
(1.Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Animal Disease Diagnostic and Immunology/Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China; 2.College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;3.College of Animal Science, Guizhou University, Guiyang 550025, China)
关键词:
H9N2亚型禽流感病毒免疫抑制
Keywords:
H9N2 subtype avian influenza viruschickenimmunosuppressive
分类号:
S858.312.65
DOI:
doi:10.3969/j.issn.1000-4440.2018.02.021
文献标志码:
A
摘要:
通过评价H9N2亚型禽流感病毒(AIVs)感染对于鸡新城疫和传染性支气管炎活疫苗免疫效力的影响,研究了H9N2 AIVs的免疫抑制机理。结果显示,H9N2 AIVs感染可降低鸡对鸡新城疫和传染性支气管炎活疫苗的抗体应答,但与对照组相比差异并不显著;而流式分析结果显示,与对照组相比H9N2 AIVs感染可显著降低鸡外周血中CD4+T淋巴细胞和CD8+T淋巴细胞的比率(P<0.05);抗原特异性的T淋巴细胞增殖试验结果显示,与对照组相比H9N2 AIVs感染鸡的外周血T淋巴细胞增殖活性显著下降(P<0.05);另外,H9N2 AIV感染还导致鸡血清中细胞因子IFN-γ和IL-4应答水平的下降,其中IFN-γ的应答水平与对照组相比差异显著(P<0.05)。说明H9N2 AIVs感染可抑制鸡的免疫应答,其中对细胞免疫应答的抑制更为明显。
Abstract:
The influence of H9N2 subtype avian influenza viruses (H9N2 AIVs) infection on the immune efficacy of newcastle disease virus (NDV) and infectious bronchitis virus (IBV) vaccine was assessed to determine the immune suppressive mechanism for H9N2 virus. The results showed that the infection of H9N2 virus reduced the antibody titers to the live vaccine of NDV and IBV, but this difference was not significant compared with the control group. However, the flow cytometric analysis of peripheral blood lymphocyte subpopulations showed that H9N2 virus infection resulted in a significantly decrease in CD4+T lymphocyte and CD8+T lymphocyte proportion, and the antigen specific proliferation ability of peripheral blood T lymphocyte in H9N2 virus infection group was also obviously suppressed compared with that of the control group. Moreover, the level of cytokines IFN-γ and IL-4 in serum of H9N2 virus infection chickens was also lower than that of control group, and the difference of IFN-γ was significant. The results suggested that H9N2 AIVs infection could suppress the immune response to vaccine in chickens, and the cellular immune response was more significantly suppressed.

参考文献/References:

[1]HOMME P J E B. Avian influenza virus infections. I. Characteristics of influenza A-turkey-Wisconsin-1966 virus [J]. Avian Dis, 1970, 14:66-74.
[2]陈伯伦,张泽纪,陈伟斌. 禽流感研究: I 鸡A 型流感病毒分离与血清学初步鉴定[J].中国兽医杂志, 1994,22(10):3-5.
[3]LIU J K, OKAZAKI H, OZAKI Y, et al. H9N2 influenza viruses prevalent in poultry in China are phylogenetically distinct from A/quail/Hong Kong/G1/97 presumed to be the donor of the internal protein genes of the H5N1 Hong Kong/97 virus [J]. Avian Pathol, 2003, 32:551-560.
[4]LIU H X, LIU J, CHENG D, et al. Phylogenetic analysis of the hemagglutinin genes of twenty-six avian influenza viruses of subtype H9N2 isolated from chickens in China during 1996-2001 [J]. Avian Dis, 2003, 47:116-127.
[5]LI C K, YU G, TIAN D, et al. Evolution of H9N2 influenza viruses from domestic poultry in Mainland China[J]. Virology, 2005, 340: 70-83.
[6]ZHIRNOV O P, IKIZLER M R, WRIGHT P F. Cleavage of influenza a virus hemagglutinin in human respiratory epithelium is cell associated and sensitive to exogenous antiproteases [J]. J Virol, 2002, 76: 8682-8689.
[7]朱明霞,牛玉娟,马海营,等. 规模化肉鸡场常见呼吸道病原体感染状况调查[J]. 山东农业大学学报(自然科学版), 2015, 46(6):861-864.
[8]KAREEM E, HASSAN, AHMED A, et al. Experimental co-infection of infectious bronchitis and low pathogenic avian influenza H9N2 viruses in commercial broiler chickens [J]. Res Vet Sci, 2017, 115: 356-362.
[9]毕英佐. 发鸡呼吸道堵塞的疾病探究[J]. 北方牧业, 2016(14): 23.
[10]NILI H, ASASI K. Natural cases and an experimental study of H9N2 avian influenza in commercial broiler chickens of Iran [J]. Avian Pathol, 2002, 31: 247-252.
[11]仇保丰,刘武杰,胡顺林,等. 混合感染的多种亚型禽流感病毒的纯化与鉴定[J]. 微生物学报, 2010, 50(1): 107-112.
[12]ROUSSAN D A, HADDAD R, KHAWALDEH G. Molecular survey of avian respiratory pathogens in commercial broiler chicken flocks with respiratory diseases in Jordan [J]. Poult Sci, 2008, 87: 444-448.
[13]LEI T, YING L, JIN F, et al. Prediction and identification of novel IBV S1 protein derived CTL epitopes in chicken [J]. Vaccine, 2016, 34: 380-386.
[14]MAREK W, ESAM T A, JANA S, et al. Major histocompatibility complex (MHC) class i and MHC class ii proteins: conformational plasticity in antigen presentation [J]. Front Microbiol, 2017, 8: 292.
[15]PAUL W E. Interleukin-4: a prototypic immunoregulatory lymphokine [J]. Blood, 1991, 77: 1859-1870.
[16]MEEK B, SPEIJER D, DE JONG P T, et al. The ocular humoral immuneresponse in health and disease [J]. Prog Retin Eye Res, 2003, 22(3): 391-415.
[17]ARAI K I, LEE F, MIYAJIMA A, et al. Cytokines: coordinators of immune and inflammatory responses [J]. Annu Rev Biochem, 1990, 59: 783-836.
[18]LOWENTHAL J W, YORK J J, O NEIL J J, et al. In vivo effects of chicken IFN-during infection with Eimeria [J]. J Interferon Cytokine Res, 1997, 17 (9): 551-558.
[19]WEINING K C, SCHULTZ U, MUNSTER U, et al. Biological properties of recombinant chicken interferon gamma [J]. Eur J Immunol, 1996, 26: 2440-2447.
[20]SONG K D, LILLEHOJ H S, CHOI K D, et al. Expression and functional characterization of recombinant chicken interferon gamma [J]. Vet Immunol Immunopathol,1997, 58: 321-333.
[21]DE JONG M D, SIMMONS C P, THANH T T, et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia [J]. Nat Med, 2006, 12:1203-1207.
[22]CHEUNG C Y, POON L L, LAU A S, et al. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease [J]. Lancet, 2002, 360:1831-1837.
[23]TAUBENBERGER J K, REID A H, KRAFFT A E, et al. Initial genetic characterization of the 1918 ‘Spanish’ influenza virus [J]. Science, 1997, 275:1793-1796.
[24]KASH J C, BASLER C F, GARCIA-SASTRE A, et al. Global host immune response: pathogenesis and transcriptional profiling of type A influenza viruses expressing the hemagglutinin and neuraminidase genes from the 1918 pandemic virus [J]. J Virol, 2004, 78:9499-9511.
[25]WATANABE T, KISO M, FUKUYAMA S, et al. Characterization of H7N9 influenza A viruses isolated from humans [J]. Nature, 2013, 501:551-555.
[26]SMED-SORENSEN A, CHALOUNI C, CHATTERJEE B, et al. Influenza A virus infection of human primary dendritic cells impairs their ability to cross-present antigen to CD8 T cells [J]. PLoS Pathog, 2012, 8: e1002572.
[27]KODIHALLI S, SIVANANDAN V, NAGARAJA K V, et al. Effect of avian influenza virus infection on the phagocytic function of systemic phagocytes and pulmonary macrophages of turkeys [J]. Avian Dis, 1994, 38: 93-102.
[28]谷长勤,罗玲,胡薛英,等.H9N2亚型禽流感病毒诱导蛋鸡免疫器官细胞凋亡的动态变化[J].中国兽医学报, 2008, 28(1): 12-14.
[29]袁建琴,高斌战,梁新华. H9亚型禽流感病毒对鸡免疫器官影响的研究试验[J]. 兽药市场指南,2008(12): 39-10.

相似文献/References:

[1]金崇富,杨智青,陈长宽,等.盐城地方鸡MSTN 基因外显子1 多态性及其与生产性能的相关性分析[J].江苏农业学报,2016,(06):1372.[doi:doi:10.3969/j.issn.1000-4440.2016.06.027]
 JIN Chong-fu,YANG Zhi-qing,CHEN Chang-kuan,et al.Association of MSTN gene with growth and reproductive traits in Yancheng chicken[J].,2016,(02):1372.[doi:doi:10.3969/j.issn.1000-4440.2016.06.027]
[2]金崇富,陈长宽,杨智青,等.鸡IGF1R、IGFBP-3基因SNP位点之间互作效应分析[J].江苏农业学报,2015,(05):1099.[doi:doi:10.3969/j.issn.1000-4440.2015.05.024]
 JIN Chong-fu,CHEN Chang-kuan,YANG Zhi-qing,et al.Genetic interaction effect between SNPs loci of IGF1R and IGFBP-3 genes in chicken[J].,2015,(02):1099.[doi:doi:10.3969/j.issn.1000-4440.2015.05.024]
[3]黄欣梅,李银,刘宇卓,等.华东地区H9N2亚型禽流感病毒HA基因的遗传演化分析[J].江苏农业学报,2015,(02):382.[doi:10.3969/j.issn.1000-4440.2015.02.025]
 HUANG Xin-mei,LI Yin,LIU Yu-zhuo,et al.Phylogenetic analysis of hemagglutinin genes of H9N2 subtype avian influenza viruse in Eastern China[J].,2015,(02):382.[doi:10.3969/j.issn.1000-4440.2015.02.025]
[4]黄正洋,王钱保,黄华云,等.鸡let-7b在不同生长时期及不同组织中的表达及其生物信息学分析与靶基因预测[J].江苏农业学报,2022,38(02):429.[doi:doi:10.3969/j.issn.1000-4440.2022.02.017]
 HUANG Zheng-yang,WANG Qian-bao,HUANG Hua-yun,et al.Expression of let-7b in different growth stages and different tissues of chicken and its bioinformatics analysis and target gene prediction[J].,2022,38(02):429.[doi:doi:10.3969/j.issn.1000-4440.2022.02.017]
[5]尚书凤,赵小龙,杨书洋,等.1α羟化酶的真核表达和生物信息学特征及其在成年肉鸡组织中的差异表达[J].江苏农业学报,2022,38(05):1286.[doi:doi:10.3969/j.issn.1000-4440.2022.05.016]
 SHANG Shu-feng,ZHAO Xiao-long,YANG Shu-yang,et al.Eukaryotic expression and bioinformatics characteristics of 1α hydroxylase and its differential expression in adult broiler tissues[J].,2022,38(02):1286.[doi:doi:10.3969/j.issn.1000-4440.2022.05.016]
[6]魏清宇,吴鹏飞,叶红心,等.边鸡快长型与慢长型品系胚胎骨骼肌发育中差异可变剪切[J].江苏农业学报,2023,(02):444.[doi:doi:10.3969/j.issn.1000-4440.2023.02.017]
 WEI Qing-yu,WU Peng-fei,YE Hong-xin,et al.Differential alternative splicing during embryonic skeletal muscle development in fast-growing and slow-growing strains of Bian chicken[J].,2023,(02):444.[doi:doi:10.3969/j.issn.1000-4440.2023.02.017]
[7]朱淼,李欣燃.鸡HSP70家族基因鉴定及功能分析[J].江苏农业学报,2023,(03):770.[doi:doi:10.3969/j.issn.1000-4440.2023.03.018]
 ZHU Miao,LI Xin-ran.Identification and functional analysis of the chicken HSP70 family genes[J].,2023,(02):770.[doi:doi:10.3969/j.issn.1000-4440.2023.03.018]

备注/Memo

备注/Memo:
收稿日期:2017-08-03 基金项目:国家自然科学基金项目(31502100);江苏省农业科技自主创新基金项目[CX(15)1058] 作者简介:刘青涛(1981-), 男,山东滨州人,博士,助理研究员,主要从事分子病毒学与免疫学研究。(Tel)025-84390047;(E-mail)taoqingliu2013@163.com 通讯作者:李银,(Tel)025-84391687;(E-mail)muziyin08@163.com
更新日期/Last Update: 2018-05-04