[1]单捷,邱琳,孙玲,等.基于Radarsat-2的水稻种植面积提取[J].江苏农业学报,2017,(03):561-567.[doi:doi:10.3969/j.issn.1000-4440.2017.03.012]
 SHAN Jie,QIU Lin,SUN Ling,et al.Paddy rice planting area extraction based on Radarsat-2 data[J].,2017,(03):561-567.[doi:doi:10.3969/j.issn.1000-4440.2017.03.012]
点击复制

基于Radarsat-2的水稻种植面积提取()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年03期
页码:
561-567
栏目:
耕作栽培·资源环境
出版日期:
2017-06-30

文章信息/Info

Title:
Paddy rice planting area extraction based on Radarsat-2 data
作者:
单捷邱琳孙玲王志明
(江苏省农业科学院农业经济与信息研究所,江苏南京210014)
Author(s):
SHAN JieQIU LinSUN LingWANG Zhi-ming
(Institute of Agricultural Economy and Information, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
遥感支持向量机最大似然法水稻种植面积提取
Keywords:
remote sensingsupport vector machinemaximum likelihood classificationrice planting area extraction
分类号:
S127
DOI:
doi:10.3969/j.issn.1000-4440.2017.03.012
文献标志码:
A
摘要:
选用2013年7月23日-10月27日期间5期分辨率为5.2 m×76 m的Radarsat-2影像为数据,采用支持向量机法(SVM)和最大似然法(MLC)分别对各时相水稻种植面积进行提取,并以地面实测GPS水稻样方进行精度验证。结果表明SVM和MLC方法的水稻面积提取精度均在9月9日达到最高,所以选择在9月9日的水稻面积提取结果上研究耕地地块优化和碎小图斑去除对精度的影响。通过耕地地块优化和碎小图斑去除处理,水稻面积提取精度显著提高,SVM法由原先的72876%提高到95482%,MLC法由74224%提高到91792%。
Abstract:
The 5 scenes of Radarsat-2 satellite image with spatial resolution of 5.2 m×76 m collected from July 23rd 2013 to October 27th 2013 were used to extract the paddy rice planting area of every scene using support vector machine (SVM) and maximum likelihood classification (MLC). The accuracy was verified by on-site GPS measurement quadrat areas. Since the extration accuracies of both SVM and MLC were the highest on September 9th, the scene extracted on September 9th was chosen to study the effect of farmland parcel optimization and pattern spot removal on the accuracy. The accuracy of SVM was improved from 72876% to 95482%, and the accuracy of MLC was improved from 74224% to 91792%.

参考文献/References:

[1]XIAO X M, BOLES S, LIU J Y, et al. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images[J]. Remote Sensing of Environment, 2005, 95(4): 480-492.
[2]郑长春. 水稻种植面积遥感信息提取研究[D]. 乌鲁木齐:新疆农业大学,2008.
[3]陈刘凤,林开平,胡宝清,等. 基于Landsat8-OLI数据的甘蔗种植面积监测[J]. 南方农业学报,2015,46(11):2068-2072.
[4]丁娅萍. 基于微波遥感的旱地作物识别及面积提取方法研究[D]. 北京:中国农业科学院,2013.
[5]邵芸,郭华东,范湘涛,等. 水稻时域散射特征分析及其应用研究[J]. 遥感学报, 2001, 5(5): 340-345.
[6]HALDAR D, PATNAIK C. Synergistic use of multi-temporal Radarsat SAR and AWiFS data for Rabi rice identification[J]. Journal of the Indian Society of Remote Sensing, 2010, 38(1): 153-160.
[7]YONEZAWA C, NEGISHI M, AZUMA K, et al. Growth monitoring and classification of rice fields using multitemporal RADARSAT-2 full-polarimetric data[J]. International Journal of Remote Sensing, 2012, 33(18): 5696-5711.
[8]ZHANG Y, WANG C Z, WU J P, et al. Mapping paddy rice with multitemporal ALOS/PALSAR imagery in southeast China[J]. International Journal of Remote Sensing, 2009, 30(23): 6301-6315.
[9]李坤,邵芸,张风丽. 基于多极化机载合成孔径雷达(SAR)数据的水稻提取[J]. 浙江大学学报(农业与生命科学版),2011,37(2):181-186.
[10]李章成,李源洪,周华茂. 基于ALOS-PALSAR双极化雷达影像遥感监测水稻的研究——以德阳地区为例[J]. 西南师范大学学报(自然科学版),2013,37(6):62-67.
[11]杜烨,郭长青,文宁,等. 基于多时相COSMO-SkyMed SAR数据对水稻信息提取方法的研究与应用[J]. 遥感信息,2014,29(3):30-34.
[12]田昕,陈尔学,李增元,等.基于多极化星载SAR数据的水稻/旱田识别——以江苏省海安县为例[J].遥感技术与应用,2012,27(3):406-412.
[13]张细燕,何隆华. 基于SAR与Landsat TM的小区域稻田的识别研究——以南京市江宁区为例[J].遥感技术与应用,2015,30(1):43-49.
[14]FIEUZAL R, BAUP F, MARAIS-SICRE C. Monitoring wheat and rapeseed by using synchronous optical and radar satellite data-from temporal signatures to crop parameters estimation[J]. Advances in Remote Sensing, 2013, 2(2): 162-180.
[15]何德平,肖勇,肖兴国,等. 支持向量机在遥感影像处理中的应用[J].城市勘测,2006(3):27-30.
[16]何灵敏,沈掌泉,孔繁胜,等. SVM在多源遥感图像分类中的应用研究[J].中国图象图形学报,2007,12(4):648-654.
[17]张锦水,何春阳,潘耀忠,等. 基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J].遥感学报,2006,10(1):49-57.
[18]甘甫平,王润生,王永江,等. 基于遥感技术的土地利用与土地覆盖的分类方法[J]. 国土资源遥感,1999,42(4):40-45.
[19]JANSSEN L L F, VANDERWEL F J M. Accuracy assessment of satellite derived land-cover data: A review[J].Photogrammetric Engineering and Remote Sensing, 1994,60(4): 419-426.
[20]KALKHAN M A, REICH R M. Assessing the accuracy of Landsat Thematic Mapper classification using double sampling [J]. International Journal of Remote Sensing, 1998,19(11): 2049-2060.
[21]顾晓鹤,潘耀忠,何馨,等.以地块分类为核心的冬小麦种植面积遥感估算[J].遥感学报,2010,14(4):789-805.

相似文献/References:

[1]田苗,王鹏新.降水温度指数及其在旱涝灾害监测中的应用[J].江苏农业学报,2016,(04):810.[doi:10.3969/j.issn.100-4440.2016.04.016]
 TIAN Miao,WANG Peng-xin.Precipitation-temperature index and its application in drought and flood disasters monitoring[J].,2016,(03):810.[doi:10.3969/j.issn.100-4440.2016.04.016]
[2]顾军,于堃,张腾,等.基于信息技术的财政支农项目监管方法[J].江苏农业学报,2015,(01):197.[doi:10.3969/j.issn.1000-4440.2015.01.031]
 GU Jun,YU Kun,ZHANG Teng,et al.Supervision of goverment finance-supported agricultural projects using information technology in Jiangsu province[J].,2015,(03):197.[doi:10.3969/j.issn.1000-4440.2015.01.031]
[3]苗荣慧,黄锋华,杨华,等.基于空谱一体化的农田高光谱图像分类[J].江苏农业学报,2018,(04):818.[doi:doi:10.3969/j.issn.1000-4440.2018.04.015]
 MIAO Rong-hui,HUANG Feng-hua,YANG hua,et al.Farmland classification of hyperspectral image based on spatial-spectral integration method[J].,2018,(03):818.[doi:doi:10.3969/j.issn.1000-4440.2018.04.015]
[4]孙玉婷,杨红云,王映龙,等.基于支持向量机的水稻叶面积测定[J].江苏农业学报,2018,(05):1027.[doi:doi:10.3969/j.issn.1000-4440.2018.05.009]
 SUN Yu-ting,YANG Hong-yun,WANG Ying-long,et al.Determination of rice leaf area based on support vector machine[J].,2018,(03):1027.[doi:doi:10.3969/j.issn.1000-4440.2018.05.009]
[5]郑曼迪,熊黑钢,乔娟峰,等.基于综合光谱指数的不同程度人类干扰下土壤有机质含量预测[J].江苏农业学报,2018,(05):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
 ZHENG Man-di,XIONG Hei-gang,QIAO Juan-feng,et al.Prediction of soil organic matter content based on comprehensive spectral index at different levels of human disturbance[J].,2018,(03):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
[6]许伟栋,赵忠盖.基于卷积神经网络和支持向量机算法的马铃薯表面缺陷检测[J].江苏农业学报,2018,(06):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
 XU Wei-dong,ZHAO Zhong-gai.Potato surface defects detection based on convolution neural networks and support vector machine algorithm[J].,2018,(03):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
[7]于堃,单捷,王志明,等.无人机遥感技术在小尺度土地利用现状动态监测中的应用[J].江苏农业学报,2019,(04):853.[doi:doi:10.3969/j.issn.1000-4440.2019.04.015]
 YU Kun,SHAN Jie,WANG Zhi ming,et al.Land use status monitoring in small scale by unmanned aerial vehicles (UAVs) observations[J].,2019,(03):853.[doi:doi:10.3969/j.issn.1000-4440.2019.04.015]
[8]王新忠,卢青,张晓东,等.基于高光谱图像的黄瓜种子活力无损检测[J].江苏农业学报,2019,(05):1197.[doi:doi:10.3969/j.issn.1000-4440.2019.05.028]
 WANG Xin-zhong,LU Qing,ZHANG Xiao-dong,et al.Non-destructive detection of cucumber seeds vigor based on hyperspectral imaging[J].,2019,(03):1197.[doi:doi:10.3969/j.issn.1000-4440.2019.05.028]
[9]孙晓明,陈小龙,余向阳,等.基于近红外光谱分析技术的水蜜桃产地溯源[J].江苏农业学报,2020,(02):507.[doi:doi:10.3969/j.issn.1000-4440.2020.02.035]
 SUN Xiao-ming,CHEN Xiao-long,YU Xiang-yang,et al.Traceability of honey peach origin using near infrared spectroscopy analysis techniques[J].,2020,(03):507.[doi:doi:10.3969/j.issn.1000-4440.2020.02.035]
[10]孙玲,单捷,卢必慧,等.江苏省水稻主产区水稻种植调减模式遥感监测[J].江苏农业学报,2020,(04):911.[doi:doi:10.3969/j.issn.1000-4440.2020.04.015]
 SUN Ling,SHAN Jie,LU Bi-hui,et al.Remote sensing monitoring of rice plantation reduction model in main rice production areas of Jiangsu province[J].,2020,(03):911.[doi:doi:10.3969/j.issn.1000-4440.2020.04.015]

备注/Memo

备注/Memo:
收稿日期:2017-01-19 基金项目:国家科技重大专项课题(09-Y30B03-9001-13/15-4);江苏省农业科学院基本科研业务专项课题(ZX-15-3003);江苏省农业科学院基金项目(6111651、6111650);农业部遥感应用中心技术创新课题(2911660) 作者简介:单捷(1986-),女,江苏南京人,硕士,助理研究员,主要从事农业遥感研究。(Email)owsj1986@sina.com 通讯作者:邱琳,(Email)47470302@qq.com
更新日期/Last Update: 2017-06-29