[1]聂燕芳,黄嘉瑶,周玲菀,等.香蕉枯萎病菌热带4号小种基因组规模分泌蛋白的预测与分析[J].江苏农业学报,2017,(02):288-294.[doi:doi:10.3969/j.issn.1000-4440.2017.02.008]
 NIE Yan-fang,HUANG Jia-yao,ZHOU Lin-wan,et al.Genome-scale prediction and analysis of the secretory proteins of Fusarium oxysporum f. sp. cubense tropical race 4[J].,2017,(02):288-294.[doi:doi:10.3969/j.issn.1000-4440.2017.02.008]
点击复制

香蕉枯萎病菌热带4号小种基因组规模分泌蛋白的预测与分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年02期
页码:
288-294
栏目:
植物保护
出版日期:
2017-04-30

文章信息/Info

Title:
Genome-scale prediction and analysis of the secretory proteins of Fusarium oxysporum f. sp. cubense tropical race 4
作者:
聂燕芳1黄嘉瑶2周玲菀2涂晓欢2陈慧妍2王振中2李云锋2
(1.华南农业大学材料与能源学院,广东广州510642;2.华南农业大学农学院/广东省微生物信号与作物病害重点实验室,广东广州510642)
Author(s):
NIE Yan-fang1HUANG Jia-yao2ZHOU Lin-wan2TU Xiao-huan2CHEN Hui-yan2WANG Zhen-zhong2LI Yun-feng2
(1.College of Materials and Energy,South China Agricultural University,Guangzhou 510642,China;2.Guangdong Province Key Laboratory of Microbial Signals and Disease Control/College of Agriculture,South China Agricultural University,Guangzhou 510642,China)
关键词:
尖孢镰刀菌古巴专化型4号小种香蕉枯萎病分泌蛋白碳水化合物酶类
Keywords:
Fusarium oxysporum f. sp. cubense race 4banana Fusarium wiltsecretory proteincarbohydrate-active enzyme
分类号:
S435.111.41
DOI:
doi:10.3969/j.issn.1000-4440.2017.02.008
文献标志码:
A
摘要:
为了明确香蕉枯萎病菌热带4号小种(Fusarium oxysporum f. sp. cubense tropical race 4,Foc TR4)与香蕉互作的分子机理,本研究利用SignalP、WoLF PSORT、TargetP、TMHMM和big-PI Predictor等软件,对Foc TR4全基因组22 487条蛋白质氨基酸序列进行了经典分泌蛋白的预测分析。结果表明,Foc TR4全基因组编码蛋白质中有1 054个经典分泌蛋白,占编码蛋白质总数的4.7%。蛋白质特征分析结果表明,其氨基酸序列长度集中在 100~500个氨基酸,信号肽长度集中在 17~22个氨基酸,信号肽切割位点以SPaseⅠ型为主。功能预测分析结果表明,有463个经典分泌蛋白获得了注释,主要涉及糖代谢、水解酶活性等。碳水化合物酶类(CAZymes)的分析结果表明,有281个分泌蛋白为CAZymes,其中以GH家族最多。此外,利用SecretomeP软件对Foc TR4非经典分泌蛋白进行了分析,发现有9 216个蛋白质氨基酸序列,占编码蛋白质总数的41.0%。
Abstract:
To better understand the molecular mechanisms of the Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4)-banana interactions, a refined Foc TR4 secretome was predicted by combining bioinformatic approaches, including SignalP, WOLFPRT, TargetP, TMHMM, and big-PI Predictor. Among the 22 487 amino acid sequences of Foc TR4, 1 054 were identified, accounting for 4.7% of the total proteins. The amino acids sequences contained 100 to 500 amino acids. The signal peptides included 17 to 22 amino acids, and the cleavage sites was dominated by SPaseI type. Among the 1 054 proteins, 463 were annotated for the involvement in carbohydrate metabolic process and hydrolase activity. 281 proteins were carbohydrate-active enzymes dominated by glycoside hydrolases superfamily. In addition, 9 216 non-classically secretory proteins were identified by SecretomeP software, accounting for approximately 41.0% of the total proteins.

参考文献/References:

[1]曾莉莎,吕顺,杜彩娴,等. 香蕉枯萎病苗期抗性鉴定的水培接种法研究[J]. 南方农业学报,2015,46(5):817-822.
[2]LI C,SHAO J,WANG Y,et al. Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. cubense [J]. BMC Genomics,2013,14(1):851.
[3]王飞,周登博,廉法钦,等. 香蕉枯萎病拮抗放线菌8N-10 的分离鉴定及抑菌效果评价[J]. 江苏农业科学,2016,44(4):179-183.
[4]彭埃天,宋晓兵,凌金锋,等. 香蕉枯萎病菌4号生理小种分子检测与枯萎病生物防治研究进展[J]. 果树学报,2009,26(1):77-81.
[5]左存武,李斌,李春雨,等. 香蕉对尖孢镰刀菌热带4号小种的抗性评价方法的建立[J]. 园艺学报, 2016, 43(5):876-884.
[6]LI M H,XIE X L,LIN X F,et al. Functional characterization of the gene FoOCH1 encoding a putative α-1,6-mannosyltransferase in Fusarium oxysporum f. sp. cubense[J]. Fungal Genetics and Biology,2014,65:1-13.
[7]李梅婷,张绍升. 香蕉枯萎病菌细胞壁降解酶的诱导及其对香蕉组织的降解[J]. 中国农学通报,2010,26(5): 228-231.
[8]GUO L,HAN L,YANG L,et al. Genome and transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. cubense causing banana vascular wilt disease[J]. PLoS One,2014,9(4): e95543.
[9]贾慧升,薛玉潇,方晓东,等. 香蕉枯萎病菌基因组编码的植物细胞壁降解酶系统生物信息学分析[J]. 广东农业科学,2012,39(9):129-132.
[10]董章勇,王琪,秦世雯,等. 香蕉枯萎病菌1号和4号生理小种细胞壁降解酶的比较[J]. 植物病理学报,2010,40(5):463-468.
[11]CHOI J,PARK J,KIM D,et al. Fungal secretome database: integrated platform for annotation of fungal secretomes[J]. BMC Genomics,2010,11(1):105.
[12]周晓罡,侯思名,陈铎文,等. 马铃薯晚疫病菌全基因组分泌蛋白的初步分析[J]. 遗传,2011,33(7): 785-793.
[13]韩长志. 全基因组预测禾谷炭疽菌的分泌蛋白[J]. 生物技术, 2014, 24(2): 36-41.
[14]苏源,李成云,赵之伟,等. 稻瘟菌基因组规模分泌蛋白的预测分析[J]. 云南农业大学学报, 2006, 21(3): 271-275, 292.
[15]聂燕芳,周淦,黄嘉瑶,等. 尖孢镰刀菌甜瓜专化型基因组规模分泌蛋白的预测与分析[J]. 华中农业大学学报, 2016, 35(3):24-29.
[16]DYRL V, BENDTSEN J,NIELSEN H,et al. Improved prediction of signal peptides: SignalP 3.0[J]. Journal of Molecular Biology,2004,340(4): 783-795.
[17]HORTON P,PARK K J,OBAYASHI T,et al. WoLF PSORT: protein localization predictor[J]. Nucleic Acids Research,2007,35(Web Server): W585-W587.
[18]EMANUELSSON O,BRUNAK S,VON HEIJINE G,et al. Locating proteins in the cell using TargetP,SignalP,and related tools[J]. Nature Protocols,2007,2(4):953-971.
[19]KROGH A,LARSSON B,VON HEIJINE G,et al. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes[J]. Journal of Molecular Biology,2001,305(3): 567-580.
[20]EISENHABER B,SCHNEIDER G,WILDPANER M,et al. A Sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans,Candida albicans,Neurospora crassa,Saccharomyces cerevisiae and Schizosaccharomyces pombe[J]. Journal of Molecular Biology,2004,337(2): 243-253.
[21]JUNCKER A S,WILLENBROCK H,VON HEIJINE G,et al. Prediction of lipoprotein signal peptides in Gram-negative bacteria[J]. Protein Science,2003,12(8):1652-1662.
[22]LOMBARD V,GOLACONDA R H,DRULA E,et al. The Carbohydrate-active enzymes database (CAZy) in 2013[J]. Nucleic Acids Research,2014,42:490-495.
[23]PARK B H,KARPINETS T V,SYED M H,et al. CAZymes Analysis Toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database[J]. Glycobiology,2010,20(12):1574-1584.
[24]BENDTSEN J D,JENSEN L J,BLOM N,et al. Feature based prediction of non-classical and leaderless protein secretion[J]. Protein Engineering Design & Selection,2004,17(4):349-356.
[25]罗灯涛,范继英,范成明,等. 根癌农杆菌Ti和AT质粒基因组中的分泌型信号肽分析[J]. 农业生物技术学报,2006,14 (2): 265-268.
[26]HEARD S,BROWN N A,HAMMOND-KOSACK K. An interspecies comparative analysis of the predicted secretomes of the necrotrophic plant pathogens Sclerotinia sclerotiorum and Botrytis cinerea[J]. PLoS One,2015,10(6):e0130534.
[27]于钦亮,马莉,刘林,等. 禾谷镰刀菌基因组中含寄主靶向模体分泌蛋白功能的初步分析[J]. 生物技术通报,2008,(1):160-165.
[28]MA L J,VAN DER DOES H C,BORKOVICH K A,et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium[J]. Nature,2010,464(7287):367-373.
[29]WIEMANN P,SIEBER C M,VON BARGEN KW,et al. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites[J]. PLoS Pathogen,2013,9(6):e1003475.
[30]BROWN N A,ANTONIW J,HAMMOND-KOSACK K E. The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis[J]. PLoS One,2012,7(4): e33731.
[31]KAMPER J,KAHMANN R,BOLKER M,et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis[J]. Nature,2006,444(7115):97-101.
[32]MORAIS DO AMARAL A,ANTONIW J,RUDD J J,et al. Defining the predicted protein secretome of the fungal wheat leaf pathogen Mycosphaerella graminicola[J]. PLoS One,2012,7(12): e49904.
[33]NEMRI A,SAUNDERS D G,ANDERSON C,et al. The genome sequence and effector complement of the flax rust pathogen Melampsora lini[J]. Frontiers in Plant Science,2014,5(98):98.
[34]BATTAGLIA E,BENOIT I,VAN DEN BRINK J,et al. Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome[J].BMC Genomics,2011,12(1):38.
[35]SPERSCHNEIDER J,WILLIAMS A H,HANE J K,et al. Evaluation of secretion prediction highlights differing approaches needed for oomycete and fungal effectors[J]. Frontiers in Plant Science,2015,6(98):1168.
[36]SONAH H,DESHMUKH R K, BéLANGER R R. Computational prediction of effector proteins in fungi: opportunities and challenges[J]. Frontiers in Plant Science, 2016, 7(e3):126.
[37]ZHAO Z, LIU H, WANG C, et al. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi[J]. BMC Genomics,2014,15(1):1-15.
[38]OSPINA-GIRALDO M D,GRIFFITH J G,LAIRD E W,et al. The CAZyome of Phytophthora spp.: a comprehensive analysis of the gene complement coding for carbohydrate-active enzymes in species of the genus Phytophthora[J]. BMC Genomics, 2010,11(1):525.
[39]BLACKMAN L M,CULLERNE D P,HARDHAM A R. Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome[J]. BMC Genomics,2014,15(1):785.
[40]LORRAIN C,HECKER A,DUPLESSIS S. Effector-mining in the poplar rust fungus Melampsora larici-populina secretome[J]. Frontiers in Plant Science,2015,6(1051):1-7.

相似文献/References:

[1]赖朝圆,杨越,陶成圆,等.不同作物-香蕉轮作对香蕉生产及土壤肥力质量的影响[J].江苏农业学报,2018,(02):299.[doi:doi:10.3969/j.issn.1000-4440.2018.02.011]
 LAI Chao-yuan,YANG Yue,TAO Cheng-yuan,et al.Effects of replanted banana after rotation of different crops on banana production and soil fertility quality[J].,2018,(02):299.[doi:doi:10.3969/j.issn.1000-4440.2018.02.011]

备注/Memo

备注/Memo:
收稿日期:2016-10-13 基金项目:国家自然科学基金项目(31600663); 广东省科技计划项目(2016A020210098); 广东省普通高校青年创新人才项目[粤教科函(2015)3号]作者简介:聂燕芳(1979-), 女, 广东博罗人, 博士, 讲师, 研究方向为蛋白质组学。 通讯作者:李云锋, (E-mail) yunfengli@scau.edu.cn
更新日期/Last Update: 2017-05-02