参考文献/References:
[1]张红生,胡晋. 种子学[M]. 北京:科学出版社,2015:128-147.
[2]BOVE J, JUKKUEN M, GRAPPIN P. Functional genomics in the study of seed germination[J]. Genome Biology, 2001, 3(1): reviews 1002.1-1002.5.
[3]LUAN Z, XIAO M, ZHOU D, et al. Effects of salinity, temperature, and polyethylene glycol on the seed germination of sunflower (Helianthus annuus L.) [J]. The Scientific World Journal, 2014, 2014(3):170418.
[4]YE N, LI H, ZHU G, et al. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice [J]. Plant and Cell Physiology, 2014, 55(11): 2008-2016.
[5]DE MELO R B, FRANCO A C, SILVA C O, et al. Seed germination and seedling development in response to submergence in tree species of the Central Amazonian floodplains [J]. AoB Plants, 2015, 7: plv041.
[6]MORAL J, LOZANO-BAENA M D, RUBIALES D. Temperature and water stress during conditioning and incubation phase affecting Orobanche crenata seed germination and radicle growth [J]. Frontiers in Plant Science, 2015, 6: 408.
[7]BAE J, BENOIT D L, WATSON A K. Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes [J]. Environmental Pollution, 2016, 213: 112-118.
[8]刘海波,魏玉清.盐胁迫对甜高粱和春小麦种子萌发影响的比较研究[J].江苏农业科学,2016,44(5):142-144.
[9]张雅莉 ,王林生. 铅胁迫对硬粒小麦种子萌发及幼苗生长的影响[J].山东农业科学, 2015,47(3):68-71.
[10]姜立娜,邵珠田,宋子文,等. 铅处理对菜用大黄种子萌发和幼苗生长的影响[J].江苏农业科学,2016,44(4):223-225.
[11]WANG Z F, WANG F H, ZHOU R, et al. Identification of quantitative trait loci for cold tolerance during the germination and seedling stages in rice (Oryza sativa L.) [J]. Euphytica, 2011, 181(3): 405-413.
[12]WANG Z F, WANG J F, BAO Y M, et al. Quantitative trait loci controlling rice seed germination under salt stress [J]. Euphytica, 2011, 178(3): 297-307.
[13]GUAN Y J, HU J, WANG X J, et al. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress [J]. Journal of Zhejiang University Science B, 2009, 10(6): 427-433.
[14]RAUDALES R E, STONE E, McSPADDEN GARDENER B B. Seed treatment with 2, 4-diacetylphloroglucinol-producing pseudomonads improves crop health in low-pH soils by altering patterns of nutrient uptake [J]. Phytopathology, 2009, 99(5): 506-511.
[15]SNEIDERIS L C, GAVASSI M A, CAMPOS M L, et al. Effects of hormonal priming on seed germination of pigeon pea under cadmium stress [J]. Anais da Academia Brasileira de Ciências, 2015, 87(3): 1847-1852.
[16]SIVRITEPE H O, DOURADO A M. The effect of priming treatments on the viability and accumulation of chromosomal damage in aged pea seeds [J]. Annals of Botany, 1995, 75(2): 165-171.
[17]KARTHIKEYAN B, JALEEL C A, GOPI R, et al. Alterations in seedling vigour and antioxidant enzyme activities in Catharanthus roseus under seed priming with native diazotrophs [J]. Journal of Zhejiang University Science B, 2007, 8(7): 453-457.
[18]BAILLY C, BENAMAR A, CCRBINEAU F, et al. Antioxidant systems in sunflower (Helianthus annuus L.) seeds as affected by priming [J]. Seed Science Research, 2000, 10(1): 35-42.
[19]NAKAUNE M, HANADA A, YIN Y G, et al. Molecular and physiological dissection of enhanced seed germination using short-term low-concentration salt seed priming in tomato [J]. Plant Physiology Biochemistry, 2012, 52: 28-37.
[20]CHENG J, WANG L, ZENG P, et al. Identification of genes involved in rice seed priming in the early imbibition stage [J]. Plant Biology, 2017,19(1):61-69.
[21]MIURA K, LIN S Y, YANO M, et al. Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.) [J]. Theoretical and Applied Genetics, 2002, 104(6/7): 981-986.
[22]FUJINO K, SEKIGUCHI H, SATO T, et al. Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.) [J]. Theoretical and Applied Genetics, 2004, 108(5): 794-799.
[23]WANG Z F, WANG J F, BAO Y M, et al. Quantitative trait loci analysis for rice seed vigor during the germination stage [J]. Journal of Zhejiang University Science B, 2010, 11(12): 958-964.
[24]WANG Z F, WANG J F, BAO Y M, et al. Inheritance of rice seed germination ability under salt stress [J]. Rice Science, 2010, 17(2): 105-110.
[25]LI L, LIU X, XIE K, et al. qLTG-9, a stable quantitative trait locus for low-temperature germination in rice (Oryza sativa L.) [J]. Theoretical and Applied Genetics, 2013, 126(9): 2313-2322.
[26]MARZOUGUI S, SUGIMOTO K, YAMANOUCHI U, et al. Mapping and characterization of seed dormancy QTLs using chromosome segment substitution lines in rice [J]. Theoretical and Applied Genetics, 2012, 124(5): 893-902.
[27]CHENG J, WANG L, DU W, et al. Dynamic quantitative trait loci analysis of seed dormancy at three development stages in rice [J]. Molecular Breeding, 2014, 34(2): 501-510.
[28]WANG L, CHANG J, LAI Y, et al. Identification of QTLs with additive, epistatic and QTL × development interaction effects for seed dormancy in rice [J]. Planta, 2014, 239(2): 411-420.
[29]CHENG X, CHENG J, HUANG X, et al. Dynamic quantitative trait loci analysis of seed reserve utilization during three germination stages in rice [J]. PLoS One, 2013, 8(11): e80002.
[30]HSU S K, TUNG C W. Genetic mapping of anaerobic germination-associated QTLs controlling coleoptile elongation in rice [J]. Rice, 2015, 8(1): 38.
[31]DIAS P M B, BRUNEL-MUGUET S, DURR C, et al. QTL analysis of seed germination and pre-emergence growth at extreme temperatures in Medicago truncatula [J]. Theoretcial and Applied Genetics, 2011, 122(2): 429-444.
[32]BASNET R K, DUWAL A, TIWARI D N, et al. Quantitative trait locus analysis of seed germination and seedling vigor in Brassica rapa reveals QTL hotspots and epistatic interactions [J]. Frontiers Plant Science, 2015, 6: 1032.
[33]HU S, LUBBERSTEDT T, ZHAO G, et al. QTL mapping of low-temperature germination ability in the maize IBM Syn4 RIL population [J]. PLoS One, 2016, 11(3): e0152795.
[34]PAN Y, ZHANG H, ZHANG D, et al. Genetic analysis of cold tolerance at the germination and booting stages in rice by association mapping [J]. PLoS One, 2015, 10(3): e0120590.
[35]MAGWA R A, ZHAO H, XING Y. Genome-wide association mapping revealed a diverse genetic basis of seed dormancy across subpopulations in rice (Oryza sativa L.) [J]. BMC Genetics, 2016, 17: 28.
[36]YU L X, LIU X, BOGE W, et al. Genome-wide association study identifies loci for salt tolerance during germination in autotetraploid alfalfa (Medicago sativa L.) using genotyping-by-sequencing [J]. Frontiers Plant Science, 2016, 7: 956.
[37]KAN G, ZHANG W, YANG W, et al. Association mapping of soybean seed germination under salt stress [J]. Molecular Genetics Genomics, 2015, 290(6): 2147-2162.
[38]HATZIG S V, FRISCH M, BREUER F, et al. Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus [J]. Frontiers Plant Science, 2015, 6: 221.
[39]RANAWAKE A L, MANANGKIL O E, YOSHIDA S, et al. Mapping QTLs for cold tolerance at germination and the early seedling stage in rice (Oryza sativa L.) [J]. Biotechnology & Biotechnological Equipment, 2014, 28(6): 989-998.
[40]XIE L, TAN Z, ZHOU Y, et al. Identification and fine mapping of quantitative trait loci for seed vigor in germination and seedling establishment in rice [J]. Journal of Integrative Plant Biology, 2014, 56(8): 749-759.
[41]LIN Q, WANG W, REN Y, et al. Genetic dissection of seed storability using two different populations with a same parent rice cultivar N22 [J]. Breeding Science, 2015, 65(5): 411-419.
[42]ZHANG Y, XIA X, HE Z. The seed dormancy allele TaSdr-A1a associated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces [J]. Theoretical Applied Genetics, 2017, 130(1): 81-89.
[43]CHENG X X, HE S, GENG G H. Dynamic QTL analysis of seed reserve utilization in sh2 sweet corn germination stages [J]. Genetics Molecular Research, 2016, 15(3):gmr.15038183.
[44]UPADHYAYA H D, WANG Y H, SASTRY D V, et al. Association mapping of germinability and seedling vigor in sorghum under controlled low-temperature conditions [J]. Genome, 2016, 59(2): 137-145.
[45]SUN T P, GUBLER F. Molecular mechanism of gibberellin signaling in plants [J]. Annu Rev Plant Biol, 2004, 55: 197-223.
[46]LEE S, CHENG H, KING K E, et al. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition [J]. Genes & Development, 2002, 16(5): 646-658.
[47]SWAIN S M, TSENG T S, OLSZEWSKI N E. Altered expression of spindly affects gibberellin response and plant development [J]. Plant Physiology, 2001, 126(3): 1174-1185.
[48]EZCURRA I, WYCLIFFE P, NEHLIN L, et al. Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-element: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box [J]. The Plant Journal, 2000, 24(1):57-66.
[49]FINKELSTEIN R R, LYNCH T J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor [J]. The Plant Cell, 2000, 12(4): 599-609.
[50]KIM H, HWANG H, HONG J W, et al. A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth [J]. Journal of Experimental Botany, 2012, 63(2): 1013-1024.
[51]LI C, LIU Z, ZHANG Q, et al. SKP1 is involved in abscisic acid signalling to regulate seed germination, stomatal opening and root growth in Arabidopsis thaliana [J]. Plant, Cell & Environment, 2012, 35(5): 952-965.
[52]FENG C Z, CHEN Y, WANG C, et al. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development [J]. The Plant Journal, 2014, 80(4): 654-668.
[53]ALBERTOS P, ROMERO-PUERTAS M C, TATEMATSU K, et al. S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth [J]. Nature Communications, 2015, 6: 8669.
[54]GAZZARRINI S, TSAI A Y L. Hormone cross-talk during seed germination [J]. Essays in Biochemistry, 2015, 58: 151-164.
[55]FUJINO K, SEKIGUCHI H, MATSUDA Y, et al. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice [J]. Proceedings of the National Academy of Sciences, 2008, 105(34): 12623-12628.
[56]SUGIMOTO K, TAKEUCHI Y, EBANA K, et al. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice [J]. Proceedings of the National Academy of Sciences, 2010, 107(13): 5792-5797.
[57]SCHWEMBER A R, BRADFORD K J. A genetic locus and gene expression patterns associated with the priming effect on lettuce seed germination at elevated temperatures [J]. Plant Molecular Biology, 2010, 73(1/2): 105-118.
[58]PARK G G, PARK J J, YOON J, et al. A RING finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1 (OsDSG1), controls seed germination and stress responses in rice [J]. Plant Molecular Biology, 2010, 74(4/5): 467-478.
[59]NAKAMURA S, ABE F, KAWAHIGASHI H, et al. A wheat homolog of mother of FT and TFL1 acts in the regulation of germination [J]. The Plant Cell, 2011, 23(9): 3215-3229.
[60]KRETZSCHMAR T, PELAYO M A F, TRIJATMIKO K R, et al. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice [J]. Nature Plants, 2015, 1: 15124.
[61]LI Y, WANG C, LIU X, et al. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion [J]. Journal of Experimental Botany, 2016, 67(9): 2889-2900.
相似文献/References:
[1]陈雅玲,杜亚楠,梅怡然,等.水铁矿对小麦和水稻种子萌发的影响[J].江苏农业学报,2020,(04):814.[doi:doi:10.3969/j.issn.1000-4440.2020.04.002]
CHEN Ya-ling,DU Ya-nan,MEI Yi-ran,et al.Effects of ferrihydrite on seed germination of wheat and rice[J].,2020,(01):814.[doi:doi:10.3969/j.issn.1000-4440.2020.04.002]
[2]赵嫚,陈仕勇,李亚萍,等.外源GABA对盐胁迫下金花菜种子萌发及幼苗抗氧化能力的影响[J].江苏农业学报,2021,(02):310.[doi:doi:10.3969/j.issn.1000-4440.2021.02.005]
ZHAO Man,CHEN Shi-yong,LI Ya-ping,et al.Influence of exogenous γ-aminobutyric acid (GABA) on seed germination and antioxidant protection of Medicago polymorpha under salt stress[J].,2021,(01):310.[doi:doi:10.3969/j.issn.1000-4440.2021.02.005]
[3]王丹丹,李娟.锑胁迫下不同改良剂对水稻种子萌发的影响[J].江苏农业学报,2021,(04):823.[doi:doi:10.3969/j.issn.1000-4440.2021.04.002]
WANG Dan-dan,LI Juan.Effects of different modifiers on the germination of rice seeds under antimony stress[J].,2021,(01):823.[doi:doi:10.3969/j.issn.1000-4440.2021.04.002]
[4]祁瑞雪,马慧,林薇,等.鱼蛋白水解物对黄瓜幼苗促生和基质养分活化的效果[J].江苏农业学报,2022,38(01):172.[doi:doi:10.3969/j.issn.1000-4440.2022.01.021]
QI Rui-xue,MA Hui,LIN Wei,et al.Effects of fish protein hydrolysates on growth promotion and substrate nutrient activation of cucumber seedlings[J].,2022,38(01):172.[doi:doi:10.3969/j.issn.1000-4440.2022.01.021]
[5]张双双,施正晟,张琴,等.微藻处理后的沼液对水稻种子萌发与幼苗生长的影响[J].江苏农业学报,2022,38(04):875.[doi:doi:10.3969/j.issn.1000-4440.2022.04.002]
ZHANG Shuang-shuang,SHI Zheng-sheng,ZHANG Qin,et al.Effects of microalgae-treated biogas slurry on seed germination and seedling growth of rice[J].,2022,38(01):875.[doi:doi:10.3969/j.issn.1000-4440.2022.04.002]
[6]魏茜雅,林欣琪,梁腊梅,等.褪黑素引发处理提高朝天椒种子萌发及幼苗耐盐性的生理机制[J].江苏农业学报,2022,38(06):1637.[doi:doi:10.3969/j.issn.1000-4440.2022.06.023]
WEI Xi-ya,LIN Xin-qi,LIANG La-mei,et al.Physiological mechanism of melatonin soaking on improving seed germination and seedling salt tolerance of pepper[J].,2022,38(01):1637.[doi:doi:10.3969/j.issn.1000-4440.2022.06.023]
[7]刘昌壮,陶雨朝,杨富强,等.硫酸锰溶液浸种对玉米种子萌发期抗盐碱生理特性的影响[J].江苏农业学报,2023,(03):645.[doi:doi:10.3969/j.issn.1000-4440.2023.03.004]
LIU Chang-zhuang,TAO Yu-zhao,YANG Fu-qiang,et al.Effects of soaking seeds with manganese sulfate solution on saline-alkali resistance of maize seeds during germination[J].,2023,(01):645.[doi:doi:10.3969/j.issn.1000-4440.2023.03.004]
[8]邹宜芯,李慧,任玉欣,等.硫代葡萄糖苷浸种对青花菜种子萌发及生理特性的影响[J].江苏农业学报,2024,(08):1379.[doi:doi:10.3969/j.issn.1000-4440.2024.08.003]
ZOU Yixin,LI Hui,REN Yuxin,et al.Effects of soaking seeds with glucosinolates on seed germination and physiological characteristics of broccoli[J].,2024,(01):1379.[doi:doi:10.3969/j.issn.1000-4440.2024.08.003]