[1]杜小姣,梁小红,葛永强,等.大叶落地生根谷氨酸脱羧酶基因(KdGAD)的克隆与表达[J].江苏农业学报,2017,(01):34-42.[doi:10.3969/j.issn.1000-4440.2017.01.006 ]
 DU Xiao-jiao,LIANG Xiao-hong,GE Yong-qiang,et al.cDNA cloning and expression analysis of glutamate decarboxylase gene (KdGAD) in Kalanchoe daigremontiana[J].,2017,(01):34-42.[doi:10.3969/j.issn.1000-4440.2017.01.006 ]
点击复制

大叶落地生根谷氨酸脱羧酶基因(KdGAD)的克隆与表达()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年01期
页码:
34-42
栏目:
遗传育种·生理生化
出版日期:
2017-02-28

文章信息/Info

Title:
cDNA cloning and expression analysis of glutamate decarboxylase gene (KdGAD) in Kalanchoe daigremontiana
作者:
杜小姣1梁小红2葛永强1段雪娇1张利娟3钟天秀4
(1.深圳市日昇园林绿化有限公司,广东深圳518040;2.北京林业大学林学院草坪研究所,北京100083;3.暨南大学深圳旅游学院,广东深圳518053;4.华南农业大学林学与风景园林学院草业科学系,广东省草业工程技术研究中心,广东广州510642)
Author(s):
DU Xiao-jiao1LIANG Xiao-hong2GE Yong-qiang1DUAN Xue-jiao1ZHANG Li-juan3ZHONG Tian-xiu4
(1.Shenzhen Risheng Landscape Company Limited, Shenzhen 518040, China;2.Turfgrass Research Institute, Beijing Forestry University, Beijing 100083,China;3.Shenzhen Tourism College of Ji′nan University, Shenzhen 518053, China;4.College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong Engineering Research Center of Grassland Science,Guangzhou 510642, China)
关键词:
大叶落地生根谷氨酸脱羧酶基因克隆基因表达
Keywords:
Kalanchoe daigremontianaglutamate decarboxylasegene cloninggene expression
分类号:
S682.1+9
DOI:
10.3969/j.issn.1000-4440.2017.01.006
文献标志码:
A
摘要:
为研究大叶落地生根中胎生苗发育的分子机制,利用RACE-PCR技术从大叶落地生根中克隆了1个新的谷氨酸脱羧酶基因(KdGAD)。该基因开放阅读框长度为1 509 bp,编码502个氨基酸残基,分子量为 5.657×104,等电点为5.43。其氨基酸序列与蓖麻的同源性最高,与人参的进化关系最近,含有保守的Ser (S)-x-x-Lys (K)基序和Trp (W)残基。实时荧光定量PCR分析结果表明,该基因在大叶落地生根的茎中表达量最高,且受渗透胁迫(甘露醇处理)的诱导下调表达。
Abstract:
To better understand the molecular mechanisms of plantlet formation involved in Kalanchoe daigremontiana, a glutamate decarboxylase (GAD) gene, KdGAD, was identified using rapid amplification of cDNA end (RACE) PCR. KdGAD gene consisted of an ORF of 1 509 bp, which was predicted to encode a 502 amino acid residue protein of 5.657×104 with an isoelectric point of 5.43. The sequence analysis of the KdGAD revealed homology to Ricinus communis.Phylogenetic analysis showed that KdGAD protein was most related to Panax ginseng. In addition, KdGAD protein possessed a Ser (S)-X-X-Lys (K) active site and a single tryptophan (W) residue.Real-time PCR analysis revealed that KdGAD transcript was expressed highly in stem and down-regulated under osmotic stress (treatment with mannitol).

参考文献/References:

[1]HUANG W M, REED-FOURQUET L, WU E, et al. Molecular cloning and amino acid sequence of brain L-glutamate decarboxylase[J]. Proceedings of the National Academy of Sciences of the United States of America,1990, 87(21): 8491-8495.
[2]朱云辉,段元锋,郭元新. 苦荞发芽过程中γ -氨基丁酸的富集及其他生理指标的变化[J]. 江苏农业科学,2016,44(5):332-335.
[3]HAYAKAWA K, KIMURA M, KASAHA K, et al. Effect of a γ-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar–Kyoto rats[J]. British Journal of Nutrition,2004, 92(3): 411-417.
[4]BAEK S H, PARK S, LEE H G. Hypocholesterolemic action of fermented brown rice supplement in cholesterol-fed rats: cholesterol-lowering action of fermented brown rice[J]. Journalof Food Science Chicago,2005, 70(8): 527.
[5]LEVENTHAL A G, WANG Y, PU M, et al. GABA and its agonists improved visual cortical function in senescent monkeys[J]. Science,2003, 300(5620): 812-815.
[6]ZAREIAN M, OSKOUEIAN E, FORGHANI B, et al. Production of a wheat-based fermented rice enriched with γ-amino butyric acid using Lactobacillus plantarum MNZ and its antihypertensive effects in spontaneously hypertensive rats[J]. Journal of Functional Foods, 2015, 16: 194-203.
[7]BOUCHE N, FROMM H. GABA in plants: just a metabolite?[J]. Trends in Plant Science, 2004, 9(3): 110-115.
[8]AURISANO N, BERTANI A, REGGIANI R. Involvement of calcium and calmodulin in protein and amino acid metabolism in rice roots under anoxia[J]. Plant and Cell Physiology, 1995, 36(8): 1525-1529.
[9]MAYER R R, CHERRY J H, RHODES D. Effects of heat shock on amino acid metabolism of cowpea cells[J]. Plant Physiology, 1990, 94(2): 796-810.
[10]BAUM G, CHEN Y, ARAZI T, et al. A plant glutamate decarboxylase containing a calmodulin binding domain. Cloning, sequence, and functional analysis.[J]. Journal of Biological Chemistry, 1993, 268(26): 19610-19617.
[11]GALLEGO P P, WHOTTON L, PICTON S, et al. A role for glutamate decarboxylase during tomato ripening: the characterisation of a cDNA encoding a putative glutamate decarboxylase with a calmodulin-binding site[J]. Plant Molecular Biology, 1995, 27(6): 1143-1151.
[12]ZIK M, ARAZI T, SNEDDEN W A, et al. Two isoforms of glutamate decarboxylase in Arabidopsis are regulated by calcium/calmodulin and differ in organ distribution[J]. Plant Molecular Biology, 1998, 37(6): 967-975.
[13]AKAMA K, AKIHIRO T, KITAGAWA M, et al. Rice (Oryza sativa) contains a novel isoform of glutamate decarboxylase that lacks an authentic calmodulin-binding domain at the C-terminus[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression,2001, 1522(3): 143-150.
[14]YEVTUSHENKO D P, MCLEAN M D, PEIRIS S, et al. Calcium/calmodulin activation of two divergent glutamate decarboxylases from tobacco[J]. Journal of Experimental Botany,2003, 54(389): 2001-2002.
[15]胡伟,杨晓颖,李美英,等. 香蕉谷氨酸脱羧酶基因克隆与表达[J]. 西北植物学报, 2009,29(3): 429-434.
[16]KISAKA H, HIROAKI T, MIWA T. Antisense suppression of glutamate decarboxylase in tomato (Lycopersicon esculentum L.) results in accumulation of glutamate in transgenic tomato fruits[J]. Plant Biotechnology, 2006, 23(3): 267-274.
[17]SORREQUIETA A, FERRARO G, BOGGIO S B, et al. Free amino acid production during tomato fruit ripening: a focus on L-glutamate[J]. Amino acids, 2010, 38(5): 1523-1532.
[18]BAUM G, LEV-YADUN S, FRIDMANN Y, et al. Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants[J]. The EMBO Journal, 1996, 15(12): 2988.
[19]KATHIRESAN A, MIRANDA J, CHINNAPPA C C, et al. γ–aminobutyric acid promotes stem elongation in Stellaria longipes: the role of ethylene[J]. Plant Growth Regulation,1998, 26(2): 131-137.
[20]MOLINA-RUEDA J J, PASCUAL M B, PISSARRA J, et al. A putative role for γ-aminobutyric acid (GABA) in vascular development in pine seedlings[J]. Planta,2015, 241(1): 257-267.
[21]PALANIVELU R, BRASS L, EDLUND A F, et al. Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels[J]. Cell,2003, 114(1): 47-59.
[22]GASTEIGER E, HOOGLAND C, GATTIKER A, et al. Protein identification and analysis tools on the ExPASy server[M]. Walker:Humana Press, 2005:571-607.
[23]LARKIN M A, BLACKSHIELDS G, BROWN N P, et al. Clustal W and clustal X version 2.0[J]. Bioinformatics,2007, 23(21): 2947-2948.
[24]TAMURA K, DUDLEY J, NEI M, et al. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution,2007, 24(8): 1596-1599.
[25]COMBET C, BLANCHET C, GEOURJON C, et al. NPS@: network protein sequence analysis[J]. Trends Biochem Sci, 2000, 25(3): 147-150.
[26]KELLEY L A, STERNBERG M J E. Protein structure prediction on the Web: a case study using the Phyre server[J]. Nature Protocols,2009, 4(3): 363-371.
[27]ZIK M, FRIDMANN-SIRKIS Y, FROMM H. C-terminal residues of plant glutamate decarboxylase are required for oligomerization of a high-molecular weight complex and for activation by calcium/calmodulin[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics,2006, 1764(5): 872-876.
[28]TURANO F J, FANG T K. Characterization of two glutamate decarboxylase cDNA clones from Arabidopsis[J]. Plant Physiology,1998, 117(4): 1411-1421.
[29]GALLEGO P P, WHOTTON L, PICTON S, et al. A role for glutamate decarboxylase during tomato ripening: the characterisation of a cDNA encoding a putative glutamate decarboxylase with a calmodulin-binding site[J]. Plant Molecular Biology, 1995, 27(6): 1143-1151.
[30]AKAMA K, AKIHIRO T, KITAGAWA M, et al. Rice (Oryza sativa) contains a novel isoform of glutamate decarboxylase that lacks an authentic calmodulin-binding domain at the C-terminus[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 2001, 1522(3): 143-150.
[31]ARAZI T, BAUM G, SNEDDEN W A, et al. Molecular and biochemical analysis of calmodulin interactions with the calmodulin-binding domain of plant glutamate decarboxylase[J]. Plant Physiology,1995, 108(2): 551-561.
[32]KISAKA H, HIROAKI T, MIWA T. Antisense suppression of glutamate decarboxylase in tomato (Lycopersicon esculentum L.) results in accumulation of glutamate in transgenic tomato fruits[J]. Plant Biotechnology, 2006, 23(3): 267-274.
[33]LEE J, KIM Y, JEONG D, et al. Isolation and characterization of a glutamate decarboxylase (GAD) gene and their differential expression in response to abiotic stresses from Panax ginseng C. A. Meyer[J]. Molecular Biology Reports, 2010, 37(7): 3455-3463.
[34]ZOROV D B, JUHASZOVA M, SOLLOTT S J. Mitochondrial ROS-induced ROS release: an update and review[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2006, 1757(5): 509-517.

相似文献/References:

[1]葛永强,张利娟,杜小姣,等.大叶落地生根组氨醇脱氢酶基因克隆及表达分析[J].江苏农业学报,2017,(02):280.[doi:doi:10.3969/j.issn.1000-4440.2017.02.007]
 GE Yong-qiang,ZHANG Li-juan,DU Xiao-jiao,et al.Cloning and expression analysis of histidinol dehydrogenase(KdHDH) gene in Kalanchoe daigremontiana[J].,2017,(01):280.[doi:doi:10.3969/j.issn.1000-4440.2017.02.007]

备注/Memo

备注/Memo:
收稿日期:2016-05-17 基金项目:深圳市知识创新项目(20160093);北京林业大学与深圳市日昇园林绿化有限公司产学研合作项目 作者简介:杜小姣(1987-),女,河南邓州人,本科,工程师,主要从事园林绿化工作。(Tel)15889600573;(E-mail)15889600573@163.com 通讯作者:钟天秀,(E-mail)zhongxinbi@163.com
更新日期/Last Update: 2017-04-12