参考文献/References:
[1] 解慧梅, 穆 祥,刘易通,等.口蹄疫的研究现状 [J]. 动物医学进展,2006(5): 6-9.
[2] 韦显凯,郑 敏,郑列丰,等. 规模猪场不同免疫次数对口蹄疫抗体产生效果的影响[J].南方农业学报, 2014,45(3):494-497.
[3] 覃 军,梁珠民,李军成. 规模化猪场主要疫病抗体监测与免疫效果分析[J]. 江苏农业科学,2015,43(10): 264-266.
[4] HAYDON D T, KAO R R, KITCHING R P. The UK foot-and-mouth disease outbreak—the after math [J]. Nature Review: Microbiology, 2004, 2:674-681.
[5] ERIC BARANOWSKI E D, CRISTINA E F S. Foot-and-mouth disease virus [J]. Microbiology & Infectious Diseases, 2002, 25: 297-308.
[6] 张晓凤. 口蹄疫病毒的基因分型 [J]. 畜牧与饲料科学,2006(2):30-32.
[7] 刘庆军, 张永光. 口蹄疫病毒基因组结构及其功能 [J].动物医学进展,2005,26(5):1-5.
[8] HUANG C C, LIN Y L, HUANG T S. Nolecular characterization of foot-and-mouth disease virus isolated from ruminants in Taiwan in 1999-2000 [J]. Vet Microbiol, 2001, 81(6):193-205.
[9] WANG J H, LIANG C M, PENG J M, et al. Induction of immunity in swine by purified recombinant VP1 of foot-and-mouth disease virus [J]. Vaccine, 2003,21:3721-3729.
[10] 胡 波,盛 蓉,宋艳华,等. RHDV VLPs 对口蹄疫病毒B 细胞表位的展示效果[J]. 江苏农业学报, 2015, 31(6): 1362-1370.
[11] AGGARWAL N, BARNETT P V. Antigenic sites of foot-and-mouth disease virus(FMDV): an analysis of the specificities of anti-FMDV antibodies after vaccination of naturally susceptible host species [J]. J Gen Virol, 2002(2):775-782.
[12] PARRY N R, BARNETT P V, OULDRIDGE E J, et al. Neutralizing epitopes of type O foot-and-mouth disease virus. II. Mapping three conformational sites with synthetic peptide reagents [J]. J Gen Virol,1989, 70(6):1493-1503.
[13] BITTLE J L, HOUGHTEN R A, ALEXANDER H, et al. Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence [J]. Nature, 1982, 298: 30-33.
[14] WANG C Y, CHANG T Y, Walfield A M, et al. Synthetic peptide-based vaccine and diagnostic system for effective control of FMD [J]. Biologicals, 2001,29(8): 221-228.
[15] WANG C Y, CHANG T Y, WALFIELD A M, et al. Effective synthetic peptide vaccine for foot-and-mouth disease in swine [J]. Vaccine, 2002, 20(6): 2603-2610.
[16] MEKALANOS J J, SWARTZ D J, Pearson G D, et al. Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development [J]. Nature, 1983,306(5943):551-557.
[17] SPAGLER B D. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin[J]. Microbiol Rev, 1992, 56(9):622-647.
[18] HARAKUNI T, SUGAWA H, KOMESU A, et al. Heteropentameric cholera toxin B subunit chimeric molecules genetically fused to a vaccine antigen induces systemic and mucosal immune responses: a potential new strategy to target recombinant vaccine antigens to mucosal immune systems [J]. Infect Immun, 2005, 73(9):5654-5665.
[19] PIZZA M, GIULIANI M, FONTANA M, et al. Mucosal vaccines: nontoxic derivatives of LT and CT as mucosal adjuvants [J]. Vaccine, 2001, 19(17-19): 2534-2541.
[20] SUN J B, RAGHAVAN S, SJ?LING A, et al. Oral tolerance induction with antigen conjugated to cholera toxin B subunit generates both Foxp3+ CD25+ and Foxp3- CD25- CD4+ regulatory T cells[J]. J Immunol, 2006, 177(11): 7634-7644.
[21] MAXIM T, JIANG X Q, KONG X P, et al. Structure-guided design and immunological characterization of immunogens presenting the HIV-1 gp120 V3 loop on a CTB scaffold [J]. Virology, 2010, 405(12):513-523.
[22] LUCI C, HERVOUET C, ROUSSEAU D, et al. Dendritic cell-mediated induction of mucosal cytotoxic responses following intravaginal immunization with the nontoxic B subunit of cholera toxin[J]. J Immunol, 2006, 176(5): 2749-2757.
[23] TABOGA O, TAMI C, CARRILLO E, et al. A large-scale evaluation of peptide vaccines against foot-and-mouth disease: lack of solid protection in cattle and isolation of escape mutants [J]. J Virol, 1997, 71(4):2606-2614.
[24] KUPRIIANOVA M A, ZHMAKM N, KOROEV D O, et al. Synthetic peptide designs based on immunoactive fragments of the VP1 protein of the foot-and-mouth disease virus strain A22 [J]. Bioorg Khim, 2000, 26(12): 926-932.