参考文献/References:
[1]PAN S C, KUNG H C, KAO T M, et al. The Madin-Darby canine kidney cell culture derived influenza A/H5N1 vaccine: a phase I trial in Taiwan [J]. J Microbiol Immunol Infect, 2013, 46(6): 448-455.
[2]LOMBARDO T, DOTTI S, RENZI S, et al. Susceptibility of different cell lines to Avian and Swine influenza viruses [J]. J Virol Methods, 2012, 185(1): 82-88.
[3]HU W, ZHANG H, HAN Q, et al. A vero-cell-adapted vaccine donor strain of influenza A virus generated by serial passages [J]. Vaccine, 2015, 33(2): 374-381.
[4]SIDORENKO Y and REICHL U. Structured model of influenza virus replication in MDCK cells [J]. Biotechnol Bioeng, 2004, 88(1): 1-14.
[5]SPACKMAN E and KILLIAN M L. Avian influenza virus isolation, propagation, and titration in embryonated chicken eggs [J]. Methods Mol Biol, 2014, 1161: 125-140.
[6]KANDEIL A, BAGATO O, ZARAKET H, et al. Proteolytic enzymes in embryonated chicken eggs sustain the replication of egg-grown low-pathogenicity avian influenza viruses in cells in the absence of exogenous proteases [J]. J Virol Methods, 2014, 202: 28-33.
[7]ZHOU F, ZHOU J, MA L, et al. High-yield production of a stable vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1 [J]. Biochem Biophys Res Commun, 2012, 421(4): 850-854.
[8]VAN WIELINK R, KANT-EENBERGEN H C, HARMSEN M M, et al. Adaptation of a Madin-Darby canine kidney cell line to suspension growth in serum-free media and comparison of its ability to produce avian influenza virus to Vero and BHK21 cell lines [J]. J Virol Methods, 2011, 171(1): 53-60.
[9]TSENG Y F, HU A Y, HUANG M L, et al. Adaptation of high-growth influenza H5N1 vaccine virus in Vero cells: implications for pandemic preparedness [J]. Plos One, 2011, 6(10): e24057.
[10]AO Z, PATEL A, TRAN K, et al. Characterization of a trypsin-dependent avian influenza H5N1-pseudotyped HIV vector system for high throughput screening of inhibitory molecules [J]. Antiviral Res, 2008, 79(1): 12-18.
[11]BERTRAM S, GLOWACKA I, STEFFEN I, et al. Novel insights into proteolytic cleavage of influenza virus hemagglutinin [J]. Rev Med Virol, 2010, 20(5): 298-310.
[12]MATSUYAMA S. Protease-dependent cell entry mechanism of coronaviruses [J]. Uirusu, 2011, 61(1): 109-116.
[13]BOTTCHER E, FREUER C, STEINMETZER T, et al. MDCK cells that express proteases TMPRSS2 and HAT provide a cell system to propagate influenza viruses in the absence of trypsin and to study cleavage of HA and its inhibition [J]. Vaccine, 2009, 27(45): 6324-6329.
[14]BARON J, TARNOW C, MAYOLI-NUSSLE D, et al. Matriptase, HAT, and TMPRSS2 activate the hemagglutinin of H9N2 influenza A viruses [J]. J Virol, 2013, 87(3): 1811-1820.〖JP〗
[15]FENG L, GUO M, ZHANG S, et al. Improvement in the suspension-culture production of recombinant adeno-associated virus-LacZ in HEK-293 cells using polyethyleneimine-DNA complexes in combination with hypothermic treatment [J]. Biotechnol Appl Biochem, 2008, 50(2): 121-132.
[16]BOTTCHER-FRIEBERTSHAUSER E, FREUER C, SIELAFF F, et al. Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors [J]. J Virol, 2010, 84(11): 5605-5614.
[17]SHIROGANE Y, TAKEDA M, IWASAKI M, et al. Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2 [J]. J Virol, 2008, 82(17): 8942-8946.
[18]MATSUYAMA S, NAGATA N, SHIRATO K, et al. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2 [J]. J Virol, 2010, 84(24): 12658-12664.
[19]SHIRATO K, MATSUYAMA S, UJIKE M, et al. Role of proteases in the release of porcine epidemic diarrhea virus from infected cells [J]. J Virol, 2011, 85(15): 7872-7880.〖ZK)〗〖FL)〗