[1]刘飞,杨春艳,谢建新.傅里叶变换红外光谱结合判别分析法诊断蚕豆病虫害[J].江苏农业学报,2015,(03):531-537.[doi:10.3969/j.issn.1000-4440.2015.03.011]
 LIU Fei,YANG Chun-yan,XIE Jian-xin.Diagnosis of diseases and pests of broad bean by Fourier transform infrared spectroscopy combining discriminant analysis[J].,2015,(03):531-537.[doi:10.3969/j.issn.1000-4440.2015.03.011]
点击复制

傅里叶变换红外光谱结合判别分析法诊断蚕豆病虫害()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年03期
页码:
531-537
栏目:
植物保护
出版日期:
2015-06-30

文章信息/Info

Title:
Diagnosis of diseases and pests of broad bean by Fourier transform infrared spectroscopy combining discriminant analysis
作者:
刘飞1杨春艳1谢建新2
(1.玉溪师范学院物理系,云南玉溪653100;2.玉溪师范学院化学系,云南玉溪653100)
Author(s):
LIU Fei1YANG Chun-yan1XIE Jian-xin2
(1.Department of Physics, Yuxi Normal University, Yuxi 653100, China;2.Department of Chemistry, Yuxi Normal University, Yuxi 653100, China)
关键词:
傅里叶变换红外光谱判别分析蚕豆病虫害诊断
Keywords:
fourier transform infrared spectroscopydiscriminant analysisbroad beandisease and pestdiagnosis
分类号:
O657.3
DOI:
10.3969/j.issn.1000-4440.2015.03.011
文献标志码:
A
摘要:
为建立一种基于傅里叶变换红外光谱(FTIR)结合判别分析的蚕豆病虫害诊断方法,以病虫害危害的蚕豆叶片样品FTIR数据为指标,采用逐步判别法,依据Fisher线性判别准则建立判别模型,对样品的病虫害种类和病原物类别进行诊断,比较了不同光谱范围和不同级别光谱数据以及挑选判别指标建立判别函数时5种方法的判别效果。结果表明,基于FTIR数据的判别分析能较好地诊断蚕豆病虫害种类和病原物类别,以波数 1 800~1 200 cm-1的一阶导数光谱数据为判别指标进行诊断时效果较好;采用Unexplained variance逐步判别法对病虫害种类诊断时,正确率相对最高,为93.1%;采用Wilks’lambda逐步判别法对病原物类别诊断时,正确率为91.8%。FTIR光谱技术与判别分析方法相结合,可为蚕豆病虫害诊断提供一种简便易行的方法。
Abstract:
To establish a method based on the fourier transform infrared spectroscopy (FTIR) combined with stepwise discriminant analysis to diagnose the types of diseases and pests of broad bean, the spectral characteristics of the leaf samples attacked by diseases or pests were analyzed using the discriminant model based on the Fisher linear discriminant criterion. The discrimination effectiveness was compared for the range and level of spectral data, as well as the 5 discriminant indexes used for developing discriminant function. The results indicate that that the discriminant analysis based on FTIR could diagnose the type of diseases and pests and the category of pathogens of broad bean, and the first derivative spectra data in the range of 1 800-1 200 cm-1 should be selected as the discriminant index for best discrimination effectiveness. When dealing with the type identifications of diseases and pests of broad bean, the Unexplained variance method of stepwise discriminant analysis should be used, yielding a 93.1% accuracy. The Wilks’ lambda method was better for the categorical diagnosis of pathogens, yielding a 91.8% accuracy. As a simple and convenient method, the FTIR combined with discriminant analysis is capable of detecting the diseases and pests of broad bean.

参考文献/References:


[1]吴春芳,卞晓春,曹云英,等.设施条件对蚕豆冻害及鲜荚产量的影响[J].江苏农业科学,2014,42(10):101-105.
[2]秀洪学,陈建斌,汤东生,等.氮肥对蚕豆结瘤和植株生长的影响[J].江苏农业科学,2014,42(1):82-83.
[3]王晓鸣,朱振东,段灿星,等. 蚕豆豌豆病虫害鉴别与控制技术[M]. 北京:中国农业科学技术出版社, 2007.
[4]MAY C L, JUMEL S, SCHOENY A, et al. Ascochyta blight development on a new winter pea genotype highly reactive to photoperiod under field conditions[J]. Field Crops Research, 2009, 111(1-2): 32-38.
[5]PORTA-PUGLIA A, ARAGONA M. Improvement of grain legumes general part: diseases[J]. Field Crops Resesrch, 1997, 53(1-3): 17-30.
[6]EGAN M J, TALBOT N J. Genomes, free radicals and plant cell invasion: recent developments in plant pathogenic fungi[J]. Current Opinion in Plant Biology, 2008, 11(4): 367-372.
[7]FERRER R M, ESCRIU F, LUIS-ARTEAGA M, et al. New molecular methods for identification of broad bean wilt virus 1[J]. Molecular and Cellular Probes, 2008, 22(4): 223-227.
[8]陈兵,韩焕勇,王方永,等. 利用光谱红边参数监测黄萎病棉叶叶绿素和氮素含量[J]. 作物学报,2013, 39(2): 319-329.
[9]WIJEKOON C P, GOODWI P H, HSIANG T. Quantifying fungal infection of plant leaves by digital image analysis using Scion Image software[J]. Journal of Microbiological Methods, 2008,74(2-3): 94-101.
[10]姚云军,秦其明,张自力,等. 高光谱技术在农业遥感中的应用研究进展[J]. 农业工程学报, 2008,24(7): 301-306.
[11]AL-QADIRI H M, LIN M, CAVINATO A G, et al. Fourier transform infrared spectroscopy, detection and identification of Escherichia coli O157∶H7 and Alicyclobacillus strains in apple juice[J]. International Journal of Food Microbiology, 2006, 111(1): 73-80.
[12]孙素琴,周群,陈建波. 中药红外光谱分析与鉴定[M]. 北京:化学工业出版社, 2010.
[13]李志永,刘刚,李伦,等. 蚕豆病害叶的FTIR研究[J]. 光谱学与光谱分析, 2012,32(5): 1217-1210.
[14]何国民. 应用统计学案例教程[M]. 武汉:华中科技大学出版社, 2013.
[15]吴全金,董青华,孙威江. 基于傅里叶红外光谱的多茶类判别研究[J]. 茶叶科学, 2014, 34(1): 63-70.
[16]刘飞,王元忠,杨春艳,等. 基于红外光谱的石斛品种判别分析[J]. 光谱学与光谱分析, 2014, 34(11): 2968-2972.
[17]张新新,李雨,纪玉佳,等. 主成分-线性判别分析在中药药性识别中的应用[J]. 山东大学学报:医学版, 2012, 50(1): 143-147. 〖ZK)〗〖FL)〗

备注/Memo

备注/Memo:
收稿日期:2014-11-09 基金项目:国家自然科学基金项目(21465024);云南省教育厅项目(2013Y480) 作者简介:刘飞(1974-),男,云南江川人,硕士,副教授,主要从事生物红外光谱分析研究。(Tel)13987701535; (E-mail)yxtclf@163.com〖HT〗〖FQ)〗
更新日期/Last Update: 2015-06-30