[1]钱瑜,察倩倩,孔敏,等.植物 NRT2 家族的分子进化[J].江苏农业学报,2015,(01):45-54.[doi:10.3969/j.issn.1000-4440.2015.01.007]
 QIAN Yu,CHA Qian-qian,KONG Min,et al.Molecular evolution of NRT2 gene family in plant[J].,2015,(01):45-54.[doi:10.3969/j.issn.1000-4440.2015.01.007]
点击复制

植物 NRT2 家族的分子进化()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年01期
页码:
45-54
栏目:
遗传育种·耕作栽培·生理生化
出版日期:
2015-02-28

文章信息/Info

Title:
Molecular evolution of NRT2 gene family in plant
作者:
钱瑜1察倩倩2孔敏1刘照坤3李英1侯喜林1刘同坤1
(1.南京农业大学园艺学院/作物遗传与种质创新国家重点实验室,江苏南京210095;2.南京农业大学食品科技学院,江苏南京210095;3.苏州市蔬菜研究所,江苏苏州215008)
Author(s):
QIAN Yu1CHA Qian-qian2KONG Min1LIU Zhao-kun3LI Ying1HOU Xi-lin1LIU Tong-kun1
(1.College of Horticulture/State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China;2.College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;3.Suzhou Institute of Vegetable Science, Suzhou 215008, China)
关键词:
NRT2共线性序列分析进化
Keywords:
NRT2syntenysequence analysisevolution
分类号:
S601
DOI:
10.3969/j.issn.1000-4440.2015.01.007
文献标志码:
A
摘要:
为了研究硝酸盐转运子NRT2家族在植物中的进化关系,综合利用共线性信息和序列相似性信息,从8种已经进行过全基因组测序的物种(大白菜、大豆、杨树、葡萄、玉米、水稻、高粱、二穗短柄草)中,搜索拟南芥NRT2的同源基因。通过分析发现,这些基因序列基本都具有MFS超家族的NNP家族基因的典型特征。但单、双子叶植物之间,NRT2的基因结构存在着较大的差异。系统发育重建结果表明,NRT2基因家族的成员主要是在单、双子叶植物分歧后进化产生的;同时,不同植物的NRT2基因又具有不同的进化模式。大白菜NRT2家族经历了基因组三倍化事件及基因片段丢失。因此,拟南芥和大白菜的NRT2家族有较为密切的进化关系,进化分析为利用已有的拟南芥NRT2研究结果进一步在大白菜中开展NRT2的功能研究提供了参考线索。
Abstract:
In order to study the evolutionary relationship of NRT2 family of nitrate transporters in plants, synteny analysis approach and sequence similarity were used to identify putative orthologues of Arabidopsis NRT2 genes in other eight fully sequenced genomes (Chinese cabbage, soybean, western poplar, grape vine, maize, rice, sorghum, and purple false brome). Sequence analysis reveals that these sequences belong to the nitrate/nitrite poter (NNP) family of the major facilitator superfamily (MFS). However, there is significant difference in the NRT2 gene structure between monocots and dicots. Phylogentic tree analysis showed that, most members of the NRT2 family developed primarily following the divergence of the monocots and dicots. Simultaneously, the evolution models of NRT2 in different kinds of plants varied. NRT2 family of Chinese cabbage (Brassica rapa) generated the genome triplication and gene loss. Therefore, the NRT2 family in Chinese cabbage has a relatively close evolutionary relationship with that of Arabidopsis.

参考文献/References:

[1]VOS J, VAN DER PUTTEN P E L. Effect of nitrogen supply on leaf growth, leaf nitrogen economy and photosynthetic capacity in potato[J]. Field Crops Research, 1998, 59(1): 63-72.
[2]TSAY Y F, CHIU C C, TSAI C B, et al. Nitrate transporters and peptide transporters[J]. Febs Letters, 2007, 581(12): 2290-2300.
[3]〖JP+2〗LI W, WANG Y, OKAMOTO M, et al. Dissection of the AtNRT2. 1: AtNRT2. 2 inducible high-affinity nitrate transporter gene cluster[J]. Plant Physiology, 2007, 143(1): 425-433. 
[4]WIRTH J, CHOPIN F, SANTONI V, et al. Regulation of root nitrate uptake at the NRT2. 1 protein level in Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2007, 282(32): 23541-23552.
[5]〖JP+3〗OKAMOTO M, VIDMAR J J, GLASS A D M. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision[J]. Plant and Cell Physiology, 2003, 44(3): 304-317. 
[6]〖JP+3〗ORSEL M, KRAPP A, DANIEL-VEDELE F. Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression[J]. Plant Physiology, 2002, 129(2): 886-896.
[7]KAUL S, KOO H L, JENKINS J, et al. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature,2000, 408:796-815.
[8]WANG X, WANG H, WANG J, et al. The genome of the mesopolyploid crop species Brassica rapa[J]. Nature Genetics, 2011, 43(10): 1035-1039. 
[9]SCHMUTZ J, CANNON S B, SCHLUETER J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278): 178-183. 
[10]JAILLON O, AURY J M, NOEL B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiospermphyla[J]. Nature, 2007, 449: 463-465.
[11]TUSKAN G A, DIFAZIO S, JANSSON S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)[J]. Science, 2006, 313(5793): 1596-1604. 
[12]MATSUMOTO T, WU J Z, KANAMORI H, et al. The map-based sequence of the rice genome[J]. Nature,2005, 436:793-800.
[13]SCHNABLE P S, WARE D, FULTON R S, et al. The B73 maize genome: complexity, diversity, and dynamics[J]. Science, 2009, 326(5956): 1112-1115. 
[14]PATERSON A H, BOWERS J E, BRUGGMANN R, et al. The Sorghum bicolor genome and the diversification of grasses[J]. Nature, 2009, 457(7229): 551-556.
[15]VOGEL J P, GARVIN D F, MOCKLER T C, et al. Genome sequencing and analysis of the model grass Brachypodium distachyon[J]. Nature, 2010, 463(7282): 763-768. 
[16]SAITOU N, NEI M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 1987, 4(4): 406-425. 
[17]ZUCKERKANDL E, PAULING L. Evolutionary divergence and convergence in proteins[J]. Evolving Genes and Proteins, 1965, 97: 97-166. 
[18]TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739. 
[19]MARCHLER-BAUER A, ANDERSON J B, CHITSAZ F, et al. CDD: specific functional annotation with the conserved domain database[J]. Nucleic Acids Research, 2009, 37(suppl 1): 205-210. 
[20] FORDE B G. Nitrate transporters in plants: structure, function and regulation[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2000, 1465(1): 219-235. 
[21]JARGEAT P, REKANGALT D, VERNER M C, et al. Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum[J]. Current Genetics, 2003, 43(3): 199-205. 
[22]TANG H, BOWERS J E, WANG X, et al. Synteny and collinearity in plant genomes[J]. Science, 2008, 320(5875): 486-488.
[23]TANG H, WANG X, BOWERS J E, et al. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps[J]. Genome Research, 2008, 18(12): 1944-1954. 
[24]PLETT D, TOUBIA J, GARNETT T, et al. Dichotomy in the NRT gene families of dicots and grass species[J]. PloS One, 2010, 5(12): e15289. 
[25]DANIEL-VEDELE F, FILLEUR S, CABOCHE M. Nitrate transport: a key step in nitrate assimilation[J]. Current Opinion in Plant Biology, 1998, 1(3): 235-239.
[26]孔敏,杨学东,侯喜林,等. 白菜NRT2基因的克隆及表达模式分析[J]. 园艺学报,2011,38(12): 2309-2316.

备注/Memo

备注/Memo:
收稿日期:2014-06-27 基金项目:国家自然科学基金项目(31301782);江苏省自然科学基金项目(BK20130673);中国博士后基金项目(2014M550294);南京农业大学青年科技创新基金项目(KJ2013015) 作者简介:钱瑜(1989-),女,江苏苏州人,硕士研究生,主要从事不结球白菜相关研究。(E-mail)pei_1224@126.com 通讯作者:刘同坤,(Tel)025-84395332;(E-mail)liutk@njau.edu.cn
更新日期/Last Update: 2015-02-28