[1]周丽慧,张亚东,朱镇,等.利用染色体片段置换系群体检测水稻产量相关性状QTL[J].江苏农业学报,2015,(01):1-9.[doi:10.3969/j.issn.1000-4440.2015.01.001]
 ZHOU Li-hui,ZHANG Ya-dong,ZHU Zhen,et al.Quantitative trait locus (QTL) detection for rice yield-related traits using chromosome segment substitution lines[J].,2015,(01):1-9.[doi:10.3969/j.issn.1000-4440.2015.01.001]
点击复制

利用染色体片段置换系群体检测水稻产量相关性状QTL()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年01期
页码:
1-9
栏目:
遗传育种·耕作栽培·生理生化
出版日期:
2015-02-28

文章信息/Info

Title:
Quantitative trait locus (QTL) detection for rice yield-related traits using chromosome segment substitution lines
作者:
周丽慧张亚东朱镇陈涛赵庆勇姚姝赵凌赵春芳于新王才林
(江苏省农业科学院粮食作物研究所/江苏省优质水稻工程技术研究中心/国家水稻改良中心南京分中心,江苏南京210014)
Author(s):
ZHOU Li-huiZHANG Ya-dongZHU ZhenCHEN TaoZHAO Qing-yongYAO ShuZHAO LingZHAO Chun-fangYU XinWANG Cai-lin
(Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu High Quality Rice Research and Development Center/ Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, China)
关键词:
水稻染色体片段置换系数量性状基因座产量
Keywords:
ricechromosome segment substituted line(CSSL)quantitative trait locus(QTL)yield
分类号:
S511.03
DOI:
10.3969/j.issn.1000-4440.2015.01.001
文献标志码:
A
摘要:
为了发掘单株产量及其构成因素相关性状的数量性状基因座(QTL),本研究以9311/日本晴染色体片段置换系群体为材料,调查了单株产量及单株产量构成因素(单株实粒数、单株总颖花数、结实率、每穗实粒数、有效穗数、每穗颖花数、千粒质量等8个性状)。利用IciMapping v3.1软件,将分子标记检测结果与田间性状调查值相结合,定位了与单株产量、单株实粒数、千粒质量、每穗颖花数、结实率、单株总颖花数6个性状有关的QTL,未定位到与有效穗数(EPN)和每穗实粒数(GPP)有关的QTL。共定位到的10个相关QTLs,分别分布于第1条、第2条、第5条、第7条、第8条染色体的7个区间,贡献率为7.52%~44.59%,其中4个QTLs的贡献率大于10.00%。单株产量qGY1,单株实粒数qGN1,结实率qSSR1.2、qSSR2和qSSR8,加性效应值为负值,表明9311的等位基因表现为增效作用;单株总颖花数qSN2,结实率qSSR1.1,千粒质量qTGW5,每穗颖花数qSPP5和qSPP7,加性效应值为正值,表明日本晴的等位基因表现为增效作用。10个QTLs位点中,除qSN2、qTGW5、qSPP5与已克隆的LP、qSW5、OsNADH-GOGAT2可能位于同一区域外,其余7个位点均未被克隆或精细定位。
Abstract:
To identify the quantitative trait locus(QTL) referring to yield and its components for improvement of yield, a population of chromosome segment substitution lines (CSSLs) derived from backcross between indica recipient 9311 and japonica donor Nipponbare were employed, and the yield-related traits, such as grain yield per plant(GY), grain number per plant(GN), spikelet number per plant(SN), seed setting rate(SSR), grain number per panicle(GPP), effective panicles number(EPN),spikelet number per panicle(SPP), and 1 000-grain weight(TGW) were measured. A total of ten QTLs for the yield-related traits except for EPN and GPP were located at seven regions on chromosomes 1, 2, 5, 7 and 8, with explained phenotypic variations (EPV) ranging from 7.52% to 44.59%, four of which with EPV above 10.00%. qGY1, qGN1, qSSR1.2, qSSR2 and qSSR8 derived from 9311 allele showed negative effect, while the others, including qSN2, qSSR1.1, qTGW5, qSPP5 and qSPP7 derived from Nipponbare allele, exhibited positive effect. Three QTLs, qSN2, qTGW5, qSPP5 were located on the same regions as the reported cloned loci LP, qSW5, OsNADH-GOGAT2, respectively, and the rest seven QTLs were not cloned or fine mapped.

参考文献/References:

[1]顾铭洪. 水稻高产育种中一些问题的讨论[J].作物学报, 2010, 36(9): 431-439.
[2]ASHIKARI M, SAKAKIBARA H, LIN S Y, et al. Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309(741): 741-745.
[3]DESHMUKH R, SINGH A, JAIN N, et al. Identification of candidate genes for grain number in rice (Oryza sativa L.) [J]. Functional & Integrative Genomics, 2010, 10(3): 339-347.
[4]HUANG X Z, QIAN Q, LIU Z B, et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genetics, 2009, 41(4): 494-497.
[5]QIAO Y L, PIAO R H, SHI J X, et al. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.) [J]. Theor Appl Genet, 2011, 122(7): 1439-1449.
[6]XUE W Y, XING Y Z, WENG X Y, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nature Genetics, 2008, 40(6): 761-767.
[7]XING Y Z, TANG W J, XUE W Y, et al. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice[J]. Theor Appl Genet, 2008, 116(6): 789-796.
[8]LIU T M, MAO D H, ZHANG S P, et al. Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice (Oryza sativa)[J]. Theor Appl Genet, 2009, 118(8): 1509-1517.
[9]LI M, TANG D, WANG K J, et al. Mutations in the F-box gene larger panicle improve the panicle architecture and enhance the grain yield in rice[J]. Plant Biotechnology Journal, 2011, 9(9): 1002-1013.
[10]TAMURA W, KOJIMA S, TOYOKAWA A, et al. Disruption of a novel NADH-glutamate synthase 2 gene caused marked reduction in spikelet number of rice[J]. Frontiers in Plant Nutrition, 2011, 2: 57.
[11]GUO S Y, XU Y Y, LIU H H, et al. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14[J]. Nature Communications, 2013,4(3):1566.
[12]MINAKUCHI K, KAMEOKA H, YASUNO N, et al. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice[J]. Plant and Cell Physiology, 2010, 51(7): 1127-1135.
[13]LIU W Z, WU C, FU Y P, et al. Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice[J]. Planta, 2009, 230(4): 649-658.
[14]GAO Z Y, QIAN Q, LIU X H, et al. Dwarf 88, a novel putative esterase gene affecting architecture of rice plant[J]. Plant Molecular Biology, 2009, 71(3): 265-276.
[15]ARITE T, UMEHARA M, ISHIKAWA S, et al. d14, a Strigolactone-Insensitive mutant of rice, shows an accelerated outgrowth of tillers[J]. Plant and Cell Physiology, 2009, 50(8): 1416-1424.
[16]LI S Y, ZHAO B R, YUAN D Y, et al. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression[J]. Proceedings of the National Academy of Sciences, 2013, 110(8): 3167-3172.
[17]JIAO Y Q, WANG Y H, XUE D W, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics, 2010, 42(6): 541-544.
[18]EOM J S, CHO J I, REINDERS A, et al. Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth[J]. Plant Physiology, 2011, 157(1): 109-119.
[19]KIM S R, YANG J I, MOON S, et al. Rice OGR1 encodes a pentatricopeptide repeat-DYW protein and is essential for RNA editing in mitochondria[J]. The Plant Journal, 2009, 59(5): 738-749.
[20]SONG X J, HUANG W, SHI M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39: 623-630.
[21]SHOMURA A, IZAWA T, EBANA K, et al. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature Genetics, 2008, 40(8): 1023-1028.
[22]WENG J F, GU S H, WAN X Y, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Research, 2008, 18(12): 1199-1209.
[23]HEANG D, SASSA H. Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice[J]. PLoS ONE, 2012, 7(2): e31325.
[24]ZHANG X J, WANG J F, HUANG J, et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. Proceedings of the National Academy of Sciences, 2012, 109(52): 21534-21539.
[25]MAO H L, SUN S Y, YAO J L, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences, 2010, 107(45): 19579-19584.
[26]LI J M, THOMSON M, MCCOUCH S R. Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3[J]. Genetics, 2004, 168(4): 2187-2195.
[27]ISHIMARU K, HIROTSU N, MADOKA Y, et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nature Genetics, 2013, 45(6): 707-711.
[28]LI J, CHU H W, ZHANG Y H, et al. The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight[J]. PLoS ONE, 2012, 7(3): e34231.
[29]LI Y B, FAN C C, XING Y Z, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 2011, 43(12): 1266-1269.
[30]THANGASAMY S, GUO C L, CHUANG M H, et al. Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence[J]. New Phytologist, 2011, 189(3): 869-882.
[31]JIA H, REN H, GU M, et al. The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice[J]. Plant Physiology, 2011, 156(3): 1164-1175
[32]ZHU W Y, LIN J, YANG D W, et al. Development of chromosome segment substitution lines derived from backcross between two sequenced rice cultivars, Indica recipient 93-11 and japonica donar Nipponbare[J]. Plant Mol Bio Rep, 2009, 27(2): 126-131.
[33]周丽慧,赵春芳,赵凌,等.利用染色体片段置换系群体检测水稻叶片形态QTL[J]. 中国水稻科学, 2013, 27(1): 26-34.
[34]JIANG G H, XU C G, LI X H, et al. Characterization of genetic basis for the yield and its component traits of rice using doubled haploid population[J]. Acta Genet Sinica, 2004, 31(1): 63-72.
[35]WANG J K, WAN X, LI H, et al. Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach[J]. Theor Appl Genet, 2007, 115: 87-100.
[36]MCCOUCH S R, CHO Y G, YANO M, et al. Report on QTL nomenclature[J]. Rice Genet Newsl, 1997, 14: 11-13.
[37]凌启鸿,张洪程,蔡建中,等. 水稻高产群体质量及其优化控制探讨[J].中国农业科学, 1993, 26(6): 1-11.
[38]凌启鸿. 水稻群体质量理论与实践[M]. 北京:中国农业出版社, 1995: 108-220.
[39]蒋彭炎,冯来定,洪晓富. 水稻三高一稳栽培法论丛[M]. 北京:中国农业科技出版社, 1993: 1-3.
[40]黄仲青,李奕松,蒋之埙. 关于水稻“四少四高”栽培模式的探讨[C]//高佩文,谈松. 水稻高产理论与实践. 北京:中国农业出版社, 1994: 127-130.

相似文献/References:

[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
 WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(01):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
 WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(01):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
 YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(01):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
 LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(01):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
 WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(01):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
 SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(01):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
 ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(01):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
 YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(01):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
 LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(01):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
 GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(01):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
[11]林静,张所兵,张云辉,等.利用染色体片段置换系定位水稻米糠油含量的QTL[J].江苏农业学报,2015,(02):231.[doi:10.3969/j.issn.1000-4440.2015.02.001]
 LIN Jing,ZHANG Suo-bing,ZHANG Yun-hui,et al.Mapping of quantitative trait locus(QTL) for rice oil content using chromosome segment substitution lines of rice (Oryza sativa L.)[J].,2015,(01):231.[doi:10.3969/j.issn.1000-4440.2015.02.001]

备注/Memo

备注/Memo:
收稿日期:2014-07-28 基金项目:国家水稻产业技术体系项目(CARS-01-47);江苏省农业科技自主创新基金项目[CX(11)1022] 作者简介:周丽慧(1981-),女,湖南沅江人,硕士,助理研究员,主要从事水稻遗传育种研究。(Tel)13645176538;(E-mail)zhoulihui@jaas.ac.cn 通讯作者:王才林,(E-mail)clwang@jaas.ac.cn
更新日期/Last Update: 2015-02-28