参考文献/References:
[1]顾铭洪. 水稻高产育种中一些问题的讨论[J].作物学报, 2010, 36(9): 431-439.
[2]ASHIKARI M, SAKAKIBARA H, LIN S Y, et al. Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309(741): 741-745.
[3]DESHMUKH R, SINGH A, JAIN N, et al. Identification of candidate genes for grain number in rice (Oryza sativa L.) [J]. Functional & Integrative Genomics, 2010, 10(3): 339-347.
[4]HUANG X Z, QIAN Q, LIU Z B, et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genetics, 2009, 41(4): 494-497.
[5]QIAO Y L, PIAO R H, SHI J X, et al. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.) [J]. Theor Appl Genet, 2011, 122(7): 1439-1449.
[6]XUE W Y, XING Y Z, WENG X Y, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nature Genetics, 2008, 40(6): 761-767.
[7]XING Y Z, TANG W J, XUE W Y, et al. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice[J]. Theor Appl Genet, 2008, 116(6): 789-796.
[8]LIU T M, MAO D H, ZHANG S P, et al. Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice (Oryza sativa)[J]. Theor Appl Genet, 2009, 118(8): 1509-1517.
[9]LI M, TANG D, WANG K J, et al. Mutations in the F-box gene larger panicle improve the panicle architecture and enhance the grain yield in rice[J]. Plant Biotechnology Journal, 2011, 9(9): 1002-1013.
[10]TAMURA W, KOJIMA S, TOYOKAWA A, et al. Disruption of a novel NADH-glutamate synthase 2 gene caused marked reduction in spikelet number of rice[J]. Frontiers in Plant Nutrition, 2011, 2: 57.
[11]GUO S Y, XU Y Y, LIU H H, et al. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14[J]. Nature Communications, 2013,4(3):1566.
[12]MINAKUCHI K, KAMEOKA H, YASUNO N, et al. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice[J]. Plant and Cell Physiology, 2010, 51(7): 1127-1135.
[13]LIU W Z, WU C, FU Y P, et al. Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice[J]. Planta, 2009, 230(4): 649-658.
[14]GAO Z Y, QIAN Q, LIU X H, et al. Dwarf 88, a novel putative esterase gene affecting architecture of rice plant[J]. Plant Molecular Biology, 2009, 71(3): 265-276.
[15]ARITE T, UMEHARA M, ISHIKAWA S, et al. d14, a Strigolactone-Insensitive mutant of rice, shows an accelerated outgrowth of tillers[J]. Plant and Cell Physiology, 2009, 50(8): 1416-1424.
[16]LI S Y, ZHAO B R, YUAN D Y, et al. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression[J]. Proceedings of the National Academy of Sciences, 2013, 110(8): 3167-3172.
[17]JIAO Y Q, WANG Y H, XUE D W, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics, 2010, 42(6): 541-544.
[18]EOM J S, CHO J I, REINDERS A, et al. Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth[J]. Plant Physiology, 2011, 157(1): 109-119.
[19]KIM S R, YANG J I, MOON S, et al. Rice OGR1 encodes a pentatricopeptide repeat-DYW protein and is essential for RNA editing in mitochondria[J]. The Plant Journal, 2009, 59(5): 738-749.
[20]SONG X J, HUANG W, SHI M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39: 623-630.
[21]SHOMURA A, IZAWA T, EBANA K, et al. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature Genetics, 2008, 40(8): 1023-1028.
[22]WENG J F, GU S H, WAN X Y, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Research, 2008, 18(12): 1199-1209.
[23]HEANG D, SASSA H. Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice[J]. PLoS ONE, 2012, 7(2): e31325.
[24]ZHANG X J, WANG J F, HUANG J, et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. Proceedings of the National Academy of Sciences, 2012, 109(52): 21534-21539.
[25]MAO H L, SUN S Y, YAO J L, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences, 2010, 107(45): 19579-19584.
[26]LI J M, THOMSON M, MCCOUCH S R. Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3[J]. Genetics, 2004, 168(4): 2187-2195.
[27]ISHIMARU K, HIROTSU N, MADOKA Y, et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nature Genetics, 2013, 45(6): 707-711.
[28]LI J, CHU H W, ZHANG Y H, et al. The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight[J]. PLoS ONE, 2012, 7(3): e34231.
[29]LI Y B, FAN C C, XING Y Z, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 2011, 43(12): 1266-1269.
[30]THANGASAMY S, GUO C L, CHUANG M H, et al. Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence[J]. New Phytologist, 2011, 189(3): 869-882.
[31]JIA H, REN H, GU M, et al. The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice[J]. Plant Physiology, 2011, 156(3): 1164-1175
[32]ZHU W Y, LIN J, YANG D W, et al. Development of chromosome segment substitution lines derived from backcross between two sequenced rice cultivars, Indica recipient 93-11 and japonica donar Nipponbare[J]. Plant Mol Bio Rep, 2009, 27(2): 126-131.
[33]周丽慧,赵春芳,赵凌,等.利用染色体片段置换系群体检测水稻叶片形态QTL[J]. 中国水稻科学, 2013, 27(1): 26-34.
[34]JIANG G H, XU C G, LI X H, et al. Characterization of genetic basis for the yield and its component traits of rice using doubled haploid population[J]. Acta Genet Sinica, 2004, 31(1): 63-72.
[35]WANG J K, WAN X, LI H, et al. Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach[J]. Theor Appl Genet, 2007, 115: 87-100.
[36]MCCOUCH S R, CHO Y G, YANO M, et al. Report on QTL nomenclature[J]. Rice Genet Newsl, 1997, 14: 11-13.
[37]凌启鸿,张洪程,蔡建中,等. 水稻高产群体质量及其优化控制探讨[J].中国农业科学, 1993, 26(6): 1-11.
[38]凌启鸿. 水稻群体质量理论与实践[M]. 北京:中国农业出版社, 1995: 108-220.
[39]蒋彭炎,冯来定,洪晓富. 水稻三高一稳栽培法论丛[M]. 北京:中国农业科技出版社, 1993: 1-3.
[40]黄仲青,李奕松,蒋之埙. 关于水稻“四少四高”栽培模式的探讨[C]//高佩文,谈松. 水稻高产理论与实践. 北京:中国农业出版社, 1994: 127-130.
相似文献/References:
[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(01):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(01):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(01):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(01):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(01):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(01):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(01):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(01):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(01):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(01):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
[11]林静,张所兵,张云辉,等.利用染色体片段置换系定位水稻米糠油含量的QTL[J].江苏农业学报,2015,(02):231.[doi:10.3969/j.issn.1000-4440.2015.02.001]
LIN Jing,ZHANG Suo-bing,ZHANG Yun-hui,et al.Mapping of quantitative trait locus(QTL) for rice oil content using chromosome segment substitution lines of rice (Oryza sativa L.)[J].,2015,(01):231.[doi:10.3969/j.issn.1000-4440.2015.02.001]