[1]孟祥春,郑肖祎,黄泽鹏,等.CgCDA3基因缺失对胶孢炭疽菌生长和侵染致病的影响[J].江苏农业学报,2018,(05):1013-1021.[doi:doi:10.3969/j.issn.1000-4440.2018.05.007]
 MENG Xiang-chun,ZHENG Xiao-yi,HUANG Ze-peng,et al.Effects of knocking out CgCDA3 gene on growth and pathogenesis of Colletotrichum gloeosporioides[J].,2018,(05):1013-1021.[doi:doi:10.3969/j.issn.1000-4440.2018.05.007]
点击复制

CgCDA3基因缺失对胶孢炭疽菌生长和侵染致病的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年05期
页码:
1013-1021
栏目:
植物保护
出版日期:
2018-10-25

文章信息/Info

Title:
Effects of knocking out CgCDA3 gene on growth and pathogenesis of Colletotrichum gloeosporioides
作者:
孟祥春1郑肖祎12黄泽鹏1王小菁2
(1.广东省农业科学院果树研究所/农业部南亚热带果树生物学与遗传资源利用重点实验室,广东广州510640;2.华南师范大学生命科学学院,广东广州510631)
Author(s):
MENG Xiang-chun1 ZHENG Xiao-yi12 HUANG Ze-peng1 WANG Xiao-jing2
(1.Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou 510640, China;2.College of Life Science, South China Normal University, Guangzhou 510631, China)
关键词:
胶胞炭疽菌几丁质脱乙酰酶孢子萌发附着孢突变体致病性
Keywords:
Colletotrichum gloeosporioideschitin deacetylasespore germinationappressoriamutantpathogenicity
分类号:
S436.67
DOI:
doi:10.3969/j.issn.1000-4440.2018.05.007
文献标志码:
A
摘要:
为了明确CgCDA3基因在胶孢炭疽菌(Colletotrichum gloeosporioides)生长及侵染致病过程中的功能,从C. gloeosporioides基因组中克隆CgCDA3基因,首先进行生物信息学分析,然后利用基因同源重组的方法获得CgCDA3基因缺失突变体(△cda3),最后分析了△cda3的孢子萌发、附着胞形成和侵染致病性变化。结果表明,CgCDA3基因ORF全长1 470 bp,编码含489个氨基酸的蛋白质,其含有一个聚多糖去乙酰化酶保守结构域。CgCDA3蛋白与已知的西瓜炭疽菌(C. orbiculare)、禾生炭疽菌(C. graminicda)和睡莲炭疽菌(C. nymphaeae)的CDA蛋白同源性较高,同源性分别为 63%、60%和80%。CgCDA3基因缺失突变体同野生型相比,生长及产孢正常,但表现为孢子萌发能力下降,附着胞形成率降低,同时侵染芒果的致病性也显著减弱。推测CgCDA3基因参与调控胶孢炭疽菌孢子萌发和附着胞形成等形态生长和建成过程,从而对其致病性产生一定的影响。
Abstract:
In order to know functions of CgCDA3 in Colletotrichum gloeosporioides development, inoculation and pathogenesis,chitin deacetylase gene CgCDA3 was firstly in silico cloned and analyzed by bioinformatics methods. Then CgCDA3 gene deficient strains (△cda3) in which CgCDA3 gene was disrupted were obtained through homologous recombination way. Finally, spore germination, appressoria formation and pathogenicity of the △cda3 strains were evaluated compared with the wild type. Results showed that the complete gene contained an open reading frame of 1 470 nucleotides which encoded a sequence of 489 amino acid residues. The gene sequence consisted of nucleotides encoding a conserved polysaccharide deacetylase function domain. The deduced amino acid sequence of the mature enzyme revealed 63%, 60% and 80% similarity with a chitin deacetylase from C. orbiculare, C. graminicda and C. nymphaeae respectively. Null mutants of CgCDA3 gene were stable and showed patterns similar to the wild-type with respect to growth rate and sporulation, but decreased efficiency of spore germination and appressoria formation decreased, which was accompanied with weakened pathogenicity on mango fruit. Speculation from this research is CgCDA3 gene involved in regulating spore germination and appressoria formation of C. gloeosporioides, which is partly the reason of the decreased pathogenicity of CgCDA3 gene deficient mutant.

参考文献/References:

[1]胡祎,张德生,刘康德. 中国芒果产业发展变迁及影响因素研究[J].中国农业资源与区划,2015,36(6):53-59.
[2]黄忠兴,安玉兴,黄锦福,等. 海南芒果炭疽菌的发生规律与综合防治[J].热带农业科技,2008, 3(2):20-23.
[3]毕方铖,戴宏芬,孟祥春. 农杆菌介导的芒果胶孢炭疽菌遗传转化及致病性缺陷突变体的筛选[J]. 热带农业科学, 2014, 34(8): 47-51.
[4]韩长志. 胶孢炭疽菌侵染过程相关基因研究进展[J].广东农业科学,2014, 41(9):165-169.
[5]贾静,蒲金基,张贺,等. 芒果炭疽病菌环境pH信号调控基因PalF的克隆与分析[J]. 热带作物学报,2014, 35(4): 753-757.
[6]KOECK M, HARDHAM A R, DODDS P N. The role of effectors of biotrophic and hemibiotrophic fungi in infection [J]. Cellular Microbiology, 2011, 13(12): 1849-1857.
[7]MISHRA C, SEMINO C E, MCCREACH K J, et al. Cloning and expression of two chitin deacetylase genes of Saccharomyces cerevisiae [J]. Yeast, 1997, 13(4): 327-336.
[8]TSIGOS I, MARTINOU A, KAFETZOPOULOS D, et al. Chitin deacetylse: new, versatile tools in biotechnology [J]. Trends in Biotechnology, 2000, 18(7): 305-312.
[9]CHRISTODOULIDOU A, BRIZA P, ELLINGER A, et al. Yeast ascospore wall assembly requires two chitin deacetylse isozymes [J]. FEBS Letters, 1999, 460(2): 275-279.
[10]MATSUO Y, TANAKA K, MATSUDA H, et al. cda1+, encoding chitin deacetylase is required for proper spore formation in Schizosaccharomyces pombe [J]. FEBS Letters, 2005, 579(12): 2737-2743.
[11]TSIGOS I, BOURIOTIS V. Purification and characterization of chitin deacetylase from Colletotrichum lindemuthianum [J]. The Journal of Biological Chemistry, 1995, 270 (44): 26286-26291.
[12]WANG Y, SONG J Z, YANG Q, et al. Cloning of a heat-stable chitin deacetylase gene from Aspergillus nidulans and its functional expression in Escherichia coli [J]. Applied Biochemistry and Biotechnology, 2010,162(3): 843-854.
[13]陈琦光,舒灿伟,杨媚,等. 植物病原真菌效应分子的研究进展[J]. 基因组学与应用生物学,2016, 35(11): 3105-3114.
[14]VAN H A, HARRISON S J, JOOSTEN M H, et al. Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection [J]. Molecular Plant-Microbe Interactions, 2006, 19(12): 1420-1430.
[15]RANDOUX B, RENARD M D, MULARD G, et al. Distinct defenses induced in wheat against powdery mildew by acetylated and nonacetylated oligogalacturonides[J]. Phytopathology, 2010, 100(12): 1352-1363.
[16]SIEGRIST J, KAUSS H. Chitin deacetylase in cucumber leaves infected by Colletotrichum lagenarium [J]. Physiological and Molecular Plant Pathology, 1990, 36(4): 267-275.
[17]李春娟,单世华,许婷婷,等. 几丁质酶和β-1,3-葡聚糖酶基因研究进展[J]. 生物技术通讯, 2004, 15(5): 502-505.
[18]MAKSIMOV I V, VALEEV A S H, SAFIN R F. Acetylation degree of chitin in the protective response of wheat plants [J]. Biochemistry, 2011, 76(12): 1342-1346.
[19]闵婷,倪孟祥. 几丁质脱乙酰酶(CDA)的研究进展[J]. 药物生物技术, 2011, 18(1): 89-94.
[20]梁晓飞. 小麦条锈菌几丁质代谢相关基因的特征分析与真菌中聚多糖去乙酰化酶基因的序列分析[D].杨凌:西北农林科技大学, 2010.
[21]PAREEK N, VIVEKANAND V, SAROJ S, et al. Purification and characterization of chitin deacetylase from Penicillium oxalicum SAE M-51 [J]. Carbohydrate Polymers, 2012, 87(2): 1091-1097.
[22]ALKAN N, MENG X, FRIEDLANDER G, et al. Global aspects of pacC regulation of pathogenicity genes in Colletotrichum gloeosporioides as revealed by transcriptome analysis [J]. Molecular Plant-Microbe Interactions, 2013, 26(11):1345-1358.
[23]ROBINSON M, SHARON A. Transformation of the bioherbicide Colletotrichum gloeosporioides f. sp. aeschynomene by electroporation of germinated conidia [J]. Current Genetics, 1999, 36(2): 98-104.

备注/Memo

备注/Memo:
收稿日期:2018-01-29 基金项目:国家自然科学基金项目(31301824);广东省农业厅项目(2017LM4161) 作者简介:孟祥春(1976-),女,安徽萧县人,博士,副研究员,主要从事果实采后生物学及贮运保鲜技术研究。(Tel)020-38694961;(E-mail)gerbera_mxc@126.com
更新日期/Last Update: 2018-11-05