[1]孙玉珺,秦东玲,伊凡,等.外源水杨酸对低温胁迫下玉米幼苗生长及生理特性的影响[J].江苏农业学报,2018,(04):726-734.[doi:doi:10.3969/j.issn.1000-4440.2018.04.002]
 SUN Yu-jun,QIN Dong-ling,YI Fan,et al.Effects of salicylic acid on growth and physiological property of maize seedling under low temperature stress[J].,2018,(04):726-734.[doi:doi:10.3969/j.issn.1000-4440.2018.04.002]
点击复制

外源水杨酸对低温胁迫下玉米幼苗生长及生理特性的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年04期
页码:
726-734
栏目:
遗传育种·生理生化
出版日期:
2018-08-25

文章信息/Info

Title:
Effects of salicylic acid on growth and physiological property of maize seedling under low temperature stress
作者:
孙玉珺秦东玲伊凡宫磊刘哲吕金莹杨慧张平徐密林张倩杨德光
(东北农业大学农学院,黑龙江哈尔滨150030)
Author(s):
SUN Yu-junQIN Dong-lingYI FanGONG LeiLIU ZheLYU Jin-yingYANG HuiZHANG PingXU Mi-linZHANG QianYANG De-guang
(College of Agriculture, Northeast Agricultural University, Harbin 150030, China)
关键词:
玉米低温胁迫水杨酸生长生理特性
Keywords:
maizelow temperature stresssalicylic acidgrowthphysiological property
分类号:
S513.01
DOI:
doi:10.3969/j.issn.1000-4440.2018.04.002
文献标志码:
A
摘要:
为探究外源水杨酸(SA)对低温胁迫下玉米幼苗生长及生理特性的影响,以抗冷玉米自交系Kr701和冷敏感玉米自交系黑8834为材料,采用外源叶面喷施5个不同质量浓度(0 mg/L、25 mg/L、50 mg/L、100 mg/L和150 mg/L)SA的方法,分析了低温胁迫下玉米幼苗的农艺性状(株高、根长、地上部干质量及地下部干质量)和生理生化指标(相对含水量、相对电导率、净光合速率、丙二醛含量、超氧化物歧化酶和过氧化物酶活性)的变化。结果表明,喷施低浓度SA能有效减轻低温对玉米幼苗生长的抑制程度。在50 mg/L处理时效果最显著,主要表现在幼苗地上部干质量、地下部干质量、相对含水量、净光合速率、超氧化物歧化酶和过氧化物酶活性的增加;相对电导率、MDA含量的降低;在低温胁迫下,与低温对照比较,50 mg/L水杨酸处理的玉米自交系Kr701和黑8834株高分别增加173%、183%,相对含水量分别提高581%、663%,过氧化物酶活性分别增加357%、544%,相对电导率分别下降512%、586%。
Abstract:
An experiment was conducted to explore the effects of exogenous salicylic acid(SA) on the growth and physiological characteristics of maize seedlings under low temperature stress. In this test, cold resistant maize inbred line Kr701 and cold sensitive maize inbred line Hei8834 were used as test materials. SA solutions were sprayed on the leaf surface at five different concentrations (0 mg/L, 25 mg/L, 50 mg/L, 100 mg/L and 150 mg/L), and the changes of agronomic characters (plant height, root length, aboveground biomass and underground biomass) and physiological and biochemical indices [relative water content, relative electric conductivity, net photosynthetic rate (Pn), malondialdehyde (MDA) content, superoxide dismutase (SOD) and peroxidase (POD) activity] of maize seedlings under low temperature stress were analyzed. The results showed that low concentration of SA could effectively slow down the inhibition of the growth of maize seedlings. The optimum treatment was 50 mg/L SA, which increased the root dry weight, relative water content, Pn, the activity of POD and SOD of the maize seedlings, and decreased relative electric conductivity and MDA content of the maize seedlings. Under low temperature conditions, compared with the control, the plant height of Kr701 and Hei8834 increased by 173% and 183%, the relative water content increased by 581% and 663%, the POD activity increased by 357% and 544%, and the relative electric conductivity reduced by 512% and 586% under the treatment of 50 mg/L exogenous SA.

参考文献/References:

[1]杨文飞, 杜永林,顾大路,等. 4种调节物质对水稻耐低温能力的影响[J]. 江苏农业学报,2017,33(4):739-746.
[2]张帆,李景富,姜景彬,等.外源水杨酸诱导对番茄幼苗抗冷性的影响[J]. 江苏农业科学,2017,45(3):91-94.
[3]KENJI M, YASUOMI T. Regulation of water, salinity, and cold stress responses by salicylic acid[J]. Frontiers in Plant Science, 2014, 5(4):1-12.
[4]FAROOQ M, AZIZ T, BASRA S M A, et al. Chilling tolerance in hybrid maize induced by seed priming with salicylic acid[J]. Journal of Agronomy & Crop Science, 2008, 194(2):161-168.
[5]周丽霞,曹红星,肖勇. 外源水杨酸对低温胁迫椰子幼苗生理特性的影响[J]. 南方农业学报, 2017,48(11):2039-2045.
[6]NAZAR R, IQBAL N, SYEED S, et al. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars[J]. Journal of Plant Physiology, 2011, 168(8):7-15.
[7]董静,邢锦城,王茂文,等. 3种外源物质浸种对 NaCl胁迫下马齿苋种子萌发的影响[J].江苏农业科学,2017,45(14):103-106.
[8]NAFEES K, SHABINA S, ASIM M, et al. Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress[J]. International Journal of Plant Biology, 2010, 1(1): 1.
[9]赵艳侠,亓桂梅,王咏梅. 水杨酸对葡萄抗逆性调控的研究进展[J]. 山东农业科学,2017,49(11):146-150.
[10]KHAN M I, IQBAL N, MASOOD A, et al. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation[J]. Plant Signaling & Behavior, 2013, 8(11): 1-9.
[11]KHAN M I R, ASGHER M, KHAN N A. Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata, L.)[J]. Plant Physiology & Biochemistry, 2014, 80(1):67-74.
[12]江敏,郑舒文,宁慧宇,等.外源水杨酸对涝渍胁迫下小麦产量及相关生理指标的影响[J].江苏农业科学,2017,45(5):55-57.
[13]MUTLU S, KKES A, NALBANTOGLU B, et al. Exogenous salicylic acid alleviates cold damage by regulating antioxidative system in two barley (Hordeum vulgare L.) cultivars[J]. Frontiers in Life Science, 2016, 9(2):99-109.
[14]MAHDAVIAN K, GHORBANLI M, KALANTARI K M. Role of salicylic acid in regulating ultraviolet radiation-induced oxidative stress in pepper leaves[J]. Russian Journal of Plant Physiology, 2008, 55(4):560-563.
[15]LYONS J M. Chilling injury in plants[J]. Annual Review of Plant Physiology, 2003, 24(24):445-466.
[16]JANOWIAK F, MAAS B, DRFFLING K. Importance of abscisic acid for chilling tolerance of maize seedlings[J]. Journal of Plant Physiology, 2002, 159(6):635-643.
[17]邹琦. 植物生理学实验指导[M]. 北京:中国农业出版社, 2000.
[18]李合生. 植物生理生化实验原理与技术[M]. 北京:高等教育出版社, 2001.
[19]GIANNOPOLITIS C N, RIES S K. Superoxide dismutases: I. Occurrence in higher plants[J]. Plant Physiology, 1977, 59(2):309-314.
[20]KOCHBA J, LAVEE S, SPIEGELROY P. Differences in peroxidase activity and isoenzymes in embryogenic and non-embryogenic ‘Shamouti’ orange ovular callus lines[J]. Plant & Cell Physiology, 1977, 18(2):463-467.
[21]MIURA K, TADA Y. Regulation of water, salinity, and cold stress responses by salicylic acid[J]. Frontiers in Plant Science, 2014, 5(4):1-12.
[22]VANACKER H, LU H, RATE D N, et al. A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis[J]. Plant Journal, 2001, 28(2):209-216.
[23]ELMER W H. Management of fusarium wilt of cyclamen with biologicals and induced resistance[R]. New Haven:CT, 2005.
[24]LI Y R, YANG L T. Sugarcane agriculture and sugar industry in China[J]. Sugar Tech, 2015, 17(1):1-8.
[25]PINTON R, VARANINI Z, NANNIPIERI P, et al. The rhizosphere biochemistry and organic substances at the soil-plant interface[J]. Soil Science Society of America Journal, 2001, 72(6):339-353.
[26]THEOCHARIS A, CLMENT C, BARKA E A. Physiological and molecular changes in plants grown at low temperatures[J]. Planta, 2012, 235(6):1091-1105.
[27]KUK Y I, SHIN J S, BURGOS N R, et al. Antioxidative enzymes offer protection from chilling damage in rice plants[J]. Crop Science, 2003, 43(6):2109-2117.
[28]张富平,张蕊. 低温下外源水杨酸对玉米幼苗保护酶活性的影响[J]. 玉米科学, 2007, 15(4):83-85.
[29]杨小环,赵维峰,孙娜娜,等. 外源水杨酸缓解低温胁迫对玉米种子萌发和早期幼苗生长伤害的生理机制[J]. 核农学报, 2017,31(9):1811-1817.
[30]蔡肖,江振兴,甄军波,等. 水杨酸对低温胁迫下棉花种子萌发及幼苗生理特性的影响[J]. 河南农业科学, 2016, 45(7):39-43.
[31]张蕊,吕俊,米青山,等. 低温下外源水杨酸对水稻幼苗抗氧化酶系的影响[J]. 西南大学学报(自然科学版), 2006, 28(1):29-32.
[32]WANG W, VINOCUR B, ALTMAN A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1):1-14.
[33]FOYER C H, DESCOURVIERES P, KUNERT K J. Protection against oxygen radicals: an important defence mechanism studied in transgenic plants[J]. Plant Cell & Environment, 1994, 17(5):507-523.
[34]ALSCHER R, MOONEY H A, WINNER W E, et al. Response of plants to multiple stresses[J]. Quarterly Review of Biology, 1991, 43(3):275-277.
[35]王小媚,唐文忠,任惠,等. 水杨酸对低温胁迫番木瓜幼苗生理指标及叶片组织结构的影响[J]. 南方农业学报, 2016, 47(8):1290-1296.
[36]侯丽霞. 水杨酸对低温胁迫下玉米幼苗某些生理指标的影响[J]. 吉林农业科学,2013,38(5):4-6.
[37]YANG J H, YUAN G, LI Y M, et al. Salicylic acid-induced enhancement of cold tolerance through activation of antioxidative capacity in watermelon[J]. Scientia Horticulturae, 2008, 118(3):200-205.
[38]CHEN S, LIU Z, CUI J, et al. Alleviation of chilling-induced oxidative damage by salicylic acid pretreatment and related gene expression in eggplant seedlings[J]. Plant Growth Regulation, 2011, 65(1):101-108.
[39]MUTLU S, KARADAGOGLU , ATICI , et al. Protective role of salicylic acid applied before cold stress on antioxidative system and protein patterns in barley apoplast[J]. Biologia Plantarum, 2013, 57(57):507-513.
[40]MUTLU S. Time-dependent effect of salicylic acid on alleviating cold damage in two barley cultivars differing in cold tolerance[J]. Doga Turkish Journal of Botany, 2013, 37(2):343-349.
[41]BANDURSKA H, SKI A S. The effect of salicylic acid on barley response to water deficit[J]. Acta Physiologiae Plantarum, 2005, 27(3):379-386.
[42]李可凡,张蕊. 外源水杨酸对玉米幼苗抗低温胁迫能力的影响[J]. 浙江农业科学, 2015, 56(6):789-791.
[43]吴海宁,罗兴录,樊吴静. 低温胁迫对不同木薯品种幼苗生理特性的影响[J]. 南方农业学报, 2013, 44(11):1791-1799.
[44]代其林. 水杨酸对低温下水稻幼苗生理生化特性的影响[D]. 成都:四川大学, 2004.
[45]ALI F, KANWAL N, AHSAN M, et al. Crop improvement through conventional and non-conventional breeding approaches for grain yield and quality traits in Zea mays[J]. 2015, 12(4):38-50.
[46]ARIVALAGAN M, SOMASUNDARAM R. Effect of propiconazole and salicylic acid on the growth and photosynthetic pigments variations in Sorghum bicolour L. [J]. Under Drought Condition, 2015, 7:17-23.
[47]常云霞,徐克东,陈璨,等. 水杨酸对低温胁迫下大豆幼苗生长抑制的缓解效应[J]. 大豆科学, 2012, 31(6):927-931.
[48]朱玉龙,王玺. 水杨酸包衣对低温胁迫下玉米种子萌发及幼苗生长的影响[J]. 玉米科学, 2013, 21(4):68-71.
[49]杨德光,秦东玲,李钊,等.低温胁迫下外源水杨酸对玉米幼苗生理特性的影响[J].玉米科学, 2016, 24(4):122-129.
[50]ORABI S A, SALMAN S R, SHALABY M A F. Increasing resistance to oxidative damage in cucumber (Cucumis sativus L.) plants by exogenous application of salicylic acid and paclobutrazol[J]. World Journal of Agricultural Sciences, 2010, 6(3):252-259.

相似文献/References:

[1]宝华宾,梁帅强,吕远大,等.玉米籽粒蛋白含量Meta-QTL及候选基因分析[J].江苏农业学报,2016,(04):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
 BAO Hua-bin,LIANG Shuai-qiang,LYU Yuan- da,et al.Analysis of meta-QTL and candidate genes related to protein concentration in maize grain[J].,2016,(04):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
[2]印志同,秦秋霞,阚欣,等.玉米快速叶绿素荧光参数全基因组关联分析[J].江苏农业学报,2016,(04):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
 YIN Zhi-tong,QIN Qiu-xia,KAN Xin,et al.Genome-wide association analysis of fast chlorophyll fluorescence parameters in maize[J].,2016,(04):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
[3]岳海旺,陈淑萍,彭海成,等.玉米籽粒灌浆特性品种间比较[J].江苏农业学报,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
 YUE Hai-wang,CHEN Shu-ping,PENG Hai-cheng,et al.Grain filling characteristics in maize materials[J].,2016,(04):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
[4]周玲,梁帅强,林峰,等.玉米二态性 InDel 位点的鉴定和分子标记开发[J].江苏农业学报,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
 ZHOU Ling,LIANG Shuai-qiang,LIN Feng,et al.Biallelic InDel loci detection and molecular marker development in maize[J].,2016,(04):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
[5]张曼,胡雪丹,徐锦华,等.葫芦砧木种质资源耐冷性评价[J].江苏农业学报,2016,(06):1390.[doi:doi:10.3969/j.issn.1000-4440.2016.06.030]
 ZHANG Man,HU Xue-dan,XU Jin-hua,et al.Evaluation on seedling cold tolerance of bottle gourd rootstock accessions[J].,2016,(04):1390.[doi:doi:10.3969/j.issn.1000-4440.2016.06.030]
[6]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(04):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[7]江彬,毕银丽,申慧慧,等.氮营养与AM真菌协同对玉米生长及土壤肥力的影响[J].江苏农业学报,2017,(02):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
 JIANG Bin,BI Yin-li,SHEN Hui-hui,et al.Synergetic effects of Arbuscular mycorrhizal fungus and nitrogen on maize growth and soil fertility[J].,2017,(04):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
[8]李国锋,葛敏,吕远大.Opaque2转录因子对玉米α-醇溶蛋白基因家族成员表达的影响[J].江苏农业学报,2015,(06):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
 LI Guo-feng,GE Min,L Yuan-da.Differential expression of α-zein family genes regulated by Opaque2 transcription factor[J].,2015,(04):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
[9]夏金婵,何奕昆.敲除DWF4基因提高拟南芥对低温胁迫的抗性[J].江苏农业学报,2015,(03):505.[doi:10.3969/j.issn.1000-4440.2015.03.007]
 XIA Jin-chan,HE Yi-kun.Improvement of cold tolerance by knockout of DWF4 gene in Arabidopsis[J].,2015,(04):505.[doi:10.3969/j.issn.1000-4440.2015.03.007]
[10]管莉,张阿英.CaM 与 ZmCCaMK 相互作用参与 BR 诱导的玉米叶片抗氧化防护[J].江苏农业学报,2015,(01):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
 GUAN Li,ZHANG A-ying.CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J].,2015,(04):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]

备注/Memo

备注/Memo:
收稿日期:2018-03-13 基金项目:农业部种业攻关项目(29-1-1);中国博士后科学基金项目(2015M571383);黑龙江省博士后基金项目(LBH-Z14028) 作者简介:孙玉珺(1992-),男,黑龙江鸡西人,硕士研究生,研究方向为玉米逆境生理。(E-mail)sunyujunneau@163.com 通讯作者:杨德光,(E-mail)deguangyang@sina.com
更新日期/Last Update: 2018-09-04