[1]王化敦,谈晶晶,姚金保,等.小麦SUMO化修饰系统各基因家族分析[J].江苏农业学报,2018,(01):1-10.[doi:doi:10.3969/j.issn.1000-4440.2018.01.001]
 WANG Hua-dun,TAN Jing-jing,YAO Jin-bao,et al.Characterization of the gene families of SUMOylation in wheat[J].,2018,(01):1-10.[doi:doi:10.3969/j.issn.1000-4440.2018.01.001]
点击复制

小麦SUMO化修饰系统各基因家族分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年01期
页码:
1-10
栏目:
遗传育种·生理生化
出版日期:
2018-02-25

文章信息/Info

Title:
Characterization of the gene families of SUMOylation in wheat
作者:
王化敦1谈晶晶2姚金保1马鸿翔1
(1. 江苏省农业科学院粮食作物研究所/江苏省农业生物学重点实验室,江苏南京210014;2.扬州大学生物科学与技术学院,江苏扬州225009)
Author(s):
WANG Hua-dun1TAN Jing-jing2YAO Jin-bao1MA Hong-xiang1
(1.Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Provincial Key Laboratory for Agrobiology, Nanjing 210014, China;2.College of Bio-science and Bio-technology of Yangzhou University, Yangzhou 225009, China)
关键词:
小麦SUMO化修饰器官和组织基因表达
Keywords:
wheatSUMOylationorgan and tissuegene expression
分类号:
S512.1
DOI:
doi:10.3969/j.issn.1000-4440.2018.01.001
文献标志码:
A
摘要:
分别利用拟南芥和水稻中SUMO化修饰系统各基因家族成员的登录号和基因序列,在小麦基因组数据库中进行同源性比对分析,获得55个编码SUMO化修饰系统各家族的基因,划分为21个部分同源基因(Homoeologues)组,并构建了系统进化树。进一步利用小麦转录组数据考查了SUMO化修饰系统各基因家族成员在不同时期、不同器官和组织的表达模式。结果表明,小麦SUMO化修饰系统各基因家族在不同时期的各器官和组织中均有表达,但在各基因家族内部成员之间和各基因家族之间的时空表达模式具有明显差异。
Abstract:
The gene families of SUMOylation system in wheat were isolated by homology and blast analysis using the Arabidopsis and rice related genes. As a result, a total of 55 candidate genes were got and divided into 21 homoeologue groups and phylogenetic tree was constructed according to protein sequences. The expression patterns of these genes in different developmental stage and different organs and tissues of the wheat were analyzed using the published transcriptome data. The results showed that all the gene families were expressed in organs and tissues during different developmental stages, but the temporal and spatial expression patterns had significant differences among genes in the same gene family or different gene families.

参考文献/References:

[1]MIURA K, JIN J B, HASEGAWA P M. Sumoylation, a post-translational regulatory process in plants [J]. Curr Opin Plant Biol, 2007, 10(5): 495-502.
[2]HANANIA U, FURMAN-MATARASSO N, RON M, et al. Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death [J]. Plant J, 1999, 19: 533-541.
[3]KUREPA J, WALKER J M, SMALLE J, et al. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis accumulation of SUMO1 and -2 conjugates is increased by stress [J]. J Biol Chem, 1999, 278(9): 6862-6872.
[4]SARACCO S A, MILLER M J, KUREPA J, et al. Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential [J]. Plant Physiol, 2007, 145(1): 119-134.
[5]HUANG L, YANG S, ZHANG S, et al. The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root [J]. Plant J, 2009, 60(4): 666-678.
[6]CASTANO-MIQUEL L, SEGUI J, LOIS L M. Distinctive properties of Arabidopsis SUMO paralogues support the in vivo predominant role of AtSUMO1/2 isoforms [J]. Biochem J, 2011, 436(3): 581-590.
[7]MIURA K, HASEGAWA P M. Sumoylation and other ubiquitin-like post-translational modifications in plants [J]. Trends Cell Biol, 2010, 20(4): 223-232.
[8]PARK H J, KIM W Y, PARK H C, et al. SUMO and SUMOylation in plants [J]. Mol Cells, 2011, 32(4): 305-316.
[9]CASTRO P H, TAVARES R M, BEJARANO E R, et al. SUMO, a heavyweight player in plant abiotic stress responses [J]. Cell Mol Life Sci, 2012, 69(19): 3269-3283.
[10]JIN J B, JIN Y H, LEE J, et al. The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure [J]. Plant J, 2008, 53(3): 530-540.
[11]MIURA K, LEE J, MIURA T, et al. SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid [J]. Plant Cell Physiol, 2010, 51(1): 103-113.
[12]LIU Y, LAI J, YU M, et al. The Arabidopsis SUMO E3 ligase AtMMS21 dissociates the E2Fa/DPa complex in cell cycle regulation [J]. Plant Cell, 2016, 28 (9): 2225-2237.
[13]CATALA R, OUYANG J, ABREU I A, et al. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses [J]. Plant Cell, 2007, 19(9): 2952-2966.
[14]MIURA K, JIN J B, LEE J, et al. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis [J]. Plant Cell, 2007, 19(4): 1403-1414.
[15]VAN DEN BURG H A, KINI R K, SCHUURINK R C, et al. Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense [J]. Plant Cell, 2010, 22(6): 1998-2016.
[16]RAORANE M L, MUTTE S K, VARADARAJAN A R, et al. Protein SUMOylation and plant abiotic stress signaling: in silico case study of rice RLKs, heat-shock and Ca(2+)-binding proteins [J]. Plant Cell Rep, 2013, 32(7): 1053-1065.
[17]LEE J, NAM J, PARK H C, et al. Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase [J]. Plant J, 2006, 49(1): 79-90.
[18]MIURA K, LEE J, JIN J B, et al. Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling [J]. Proc Natl Acad Sci USA, 2009, 106(13): 5418-5423.
[19]ZHENG Y, SCHUMAKER K S, GUO Y, et al. Sumoylation of transcription factor MYB30 by the small ubiquitin-like modifier E3 ligase SIZ1 mediates abscisic acid response in Arabidopsis thaliana [J]. Proc Natl Acad Sci USA, 2012, 109(31): 12822-12827.
[20]MIURA K, RUS A, SHARKHUU A, et al. The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses [J]. Proc Natl Acad Sci USA, 2005, 102(21): 7760-7765.
[21]PARK B S, SONG J T, SEO H S, et al. Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1 [J]. Nat Commun, 2011, 2: 400.
[22]MIURA K, LEE J, GONG Q, et al. SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation [J]. Plant Physiol, 2011, 155(2): 1000-1012.
[23]MIURA K, HASEGAWA P M. Sumoylation and other ubiquitin-like post-translational modifications in plants [J]. Trends Cell Biol, 2010, 20(4): 223-232.
[24]NOVATCHKOVA M, TOMANOV K, HOFMANN K, et al. Update on sumoylation: defining core components of the plant SUMO conjugation system by phylogenetic comparison [J]. New Phytologist, 2012, 195(1): 23-31.
[25]WANG H, SUN R, CAO Y, et al. OsSIZ1, a SUMO E3 ligase gene, is involved in the regulation of the responses to phosphate and nitrogen in rice [J]. Plant Cell Physiol, 2015, 56(12):2381-2395.
[26]AUGUSTINE R C, YORK S L, RYTZ T C, et al. Defining the SUMO system in maize: SUMOylation is up-regulated during endosperm development and rapidly induced by stress [J]. Plant Physiol, 2016, 171 (3): 2191-2210.
[27]ZHANG R F, GUO Y, LI Y Y, et al. Functional identification of MdSIZ1 as a SUMO E3 ligase in apple [J]. J Plant Physiol, 2016, 198:69-80.
[28]CAI B, KONG X, ZHONG C, et al. SUMO E3 Ligases GmSIZ1a and GmSIZ1b regulate vegetative growth in soybean [J]. J Integr Plant Biol, 2017, 59(1):2-14.
[29]ZHOU L J, LI Y Y, ZHANG R F, et al. The SUMO E3 ligase MdSIZ1 promotes anthocyanin accumulation by sumoylating MdMYB1 under low temperature conditions in apple[J]. Plant Cell Environ, 2017, 40(10):2068-2080.
[30]WAN Y F, ROBERT K, ROWAN A M, et al. Spatiotemporal expression patterns of wheat amino acid transporters reveal their putative roles in nitrogen transport and responses to abiotic stress[J]. Scientific Reports, 2017, 7(1): 5461.
[31]CHOULET F, ALBERTI A, THEIL S, et al. Structural and functional partitioning of bread wheat chromosome 3B [J]. Science,2014, 345(6194):1249721.
[32]PFEIFER M, KUGLER K G, SANDVE S R, et al. Genome interplay in the grain transcriptome of hexaploid bread wheat [J]. Science,2014, 345(6194):1250091.
[33]KIM D, PERTEA G, TRAPNELL C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions[J]. Genome Biology,2013,14(4):R36.
[34]TRAPNELL C, ROBERTS A, GOFF L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nature Protocols, 2012, 7(3):562-578.
[35]INTERNATIONAL WHEAT GENOME SEQUENCING CONSORTIUM. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome[J]. Science, 2014, 345(6194):1251788.

相似文献/References:

[1]伍 宏,朱昌华,夏 凯,等.叶面喷施激动素对小麦品种济麦22品质的影响[J].江苏农业学报,2016,(02):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
 WU Hong,ZHU Chang-hua,XIA Kai,et al.Effect of foliar application of kinetin on quality of Triticum aestivum L. Jimai 22[J].,2016,(01):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
[2]蒋正宁,别同德,赵仁惠,等.受条锈菌诱导的小麦丝氨酸苏氨酸激酶基因TaS/TK的克隆与表达[J].江苏农业学报,2016,(05):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
 JIANG Zheng-ning,BIE Tong-de,ZHAO Ren-hui,et al.Cloning and expression analysis of a Serine/Threonine protein kinase gene TaS/TK in wheat in response to stripe rust fungal infection[J].,2016,(01):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
[3]丁彬彬,张旭,吴磊,等.小麦3B 短臂染色体抗赤霉病主效 QTL 区域候选基因的表达[J].江苏农业学报,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
 DING Bin-bin,ZHANG Xu,WU Lei,et al.Expression of candidate genes on the region of a major QTL for the resistance to Fusarium head blight on the short arm of chromosome 3B in wheat[J].,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
[4]周淼平,姚金保,张鹏,等.小麦幼苗纹枯病抗性评价新方法[J].江苏农业学报,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
 ZHOU Miao-ping,YAO Jin-bao,ZHANG Peng,et al.New method for the resistance evaluation of wheat sharp eyespot in seedling[J].,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
[5]吴磊,姜朋,张瑜,等.苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证[J].江苏农业学报,2017,(02):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
 WU Lei,JIANG Peng,ZHANG Yu,et al.Construction and validation of virus-induced gene silencing(VIGS) system in spike of wheat variety Sumai 3[J].,2017,(01):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
[6]邵继锋,陈荣府,董晓英,等.利用分根技术研究小麦铝磷交互作用[J].江苏农业学报,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
 SHAO Ji-feng,CHEN Rong-fu,DONG Xiao-ying,et al.Aluminum-phosphorus interaction in wheat grown in a split-root device[J].,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
[7]叶景秀.小麦籽粒蛋白质双向电泳体系的优化[J].江苏农业学报,2015,(05):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
 YE Jing-xiu.Optimization of two-dimensional electrophresis system for grain protein in spring wheat[J].,2015,(01):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
[8]郑舒文,徐其隆,邹华文.脱落酸对涝渍胁迫下小麦产量的影响[J].江苏农业学报,2015,(05):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
 ZHENG Shu-wen,XU Qi-long,ZOU Hua-wen.Yield of waterlogged wheat in response to ABA application[J].,2015,(01):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
[9]张玉萍,马占鸿.不同施氮量下小麦遥感估产模型构建[J].江苏农业学报,2015,(06):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
 ZHANG Yu-ping,MA Zhan-hong.Yield estimation model of wheat based on remote sensing data under different nitrogen supply conditions[J].,2015,(01):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
[10]张卓亚,王晓琳,许晓明,等.腐植酸对小麦扬花期水分利用效率及灌浆进程的影响[J].江苏农业学报,2015,(04):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]
 ZHANG Zhuo-ya,WANG Xiao-ling,XU Xiao-ming,et al.Effect of humic acid on water use efficiency and grouting process of wheat at flowering[J].,2015,(01):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]

备注/Memo

备注/Memo:
收稿日期:2017-08-15 基金项目:国家自然科学基金项目(31501819);国家现代农业产业技术体系项目(CARS-3) 作者简介:王化敦(1986-),山东菏泽人,博士,助理研究员,主要从事小麦养分吸收利用的分子机制研究。(E-mail)hdwang@jaas.ac.cn 通讯作者:马鸿翔,(E-mail)hxma@jaas.ac.cn@jaas.ac.cn
更新日期/Last Update: 2018-03-06