[1]刘丽,杨静,李成云.玉米-大豆间作对玉米根际氨氧化微生物的影响[J].江苏农业学报,2017,(06):1278-1287.[doi:doi:10.3969/j.issn.1000-4440.2017.06.012]
 LIU Li,YANG Jing,LI Cheng-yun.Effects of maize-soybean intercropping on the ammonia oxidizing microbes in the rhizosphere of maize[J].,2017,(06):1278-1287.[doi:doi:10.3969/j.issn.1000-4440.2017.06.012]
点击复制

玉米-大豆间作对玉米根际氨氧化微生物的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年06期
页码:
1278-1287
栏目:
耕作栽培·资源环境
出版日期:
2017-12-30

文章信息/Info

Title:
Effects of maize-soybean intercropping on the ammonia oxidizing microbes in the rhizosphere of maize
作者:
刘丽12杨静1李成云1
(1.云南生物资源保护与利用国家重点实验室,云南昆明650201;2.西南林业大学生物多样性保护与利用学院,云南省森林灾害预警与控制重点实验室,云南昆明650224)
Author(s):
LIU Li12YANG Jing1LI Cheng-yun1
(1. State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China;2.College of Biodiversity Conservation and Utilization, Southwest Forestry University, Key Laboratory of Forest Disater Warning and Control of Yunnan Province, Kunming 650224, China)
关键词:
间作玉米根际氨氧化微生物丰度多样性
Keywords:
intercroppingmaize rhizosphereammonia-oxidation microorganismabundancediversity
分类号:
S344.2
DOI:
doi:10.3969/j.issn.1000-4440.2017.06.012
文献标志码:
A
摘要:
以氨单加氧酶基因(amoA)为分子标记,采用real time PCR和克隆文库的方法,研究玉米-大豆间作对玉米根际氨氧化古菌(AOA)和氨氧化细菌(AOB)的丰度、群落多样性及系统发育的影响。结果表明,间作玉米根际总细菌和AOA的数量均显著高于单作玉米根际。概念种或操作分类单元(OTUs)分析结果表明,间作玉米根际AOA和AOB的多样性均高于单作玉米根际。间作玉米根际AOA共获得23个OTU,AOB共获得16个OTU,单作玉米根际AOA和AOB分别获得13个OTU和20个OTU。系统发育分析结果表明,间作抑制了玉米根际AOB的Nitrosomonadaceae类群生长,促进了Nitrosospira cluster 3a类群和1个新类群的生长。AOA则在间作的玉米根际下分散到不同分支中,并在一定程度上促进了cluster water类群和cluster 1类群的生长,抑制了cluster 6类群的生长。
Abstract:
The abundance and composition of maize rhizosphere ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. Intercropping maize rhizosphere had a higher copy numbers of 16 S rRNA and AOA amoA genes than the monoculture maize rhizosphere. Operational taxonomic unit(OTU)analysis results showed that the diversity of AOA and AOB was improved by intercropping. The number of OTU was 23 of AOA and 16 of AOB in intercropping maize rhizosphere. In monoculture maize rhizosphere, the number of OTU was 13 of AOA and 20 of AOB. Phylogenetic analyses of the amoA gene fragments showed that the intercropping inhibited the Nitrosomonadaceae group of AOB and cluster 6 of AOA, but promoted the Nitrosospira cluster 3a and a new lineage of AOB and the cluster water and cluster 1 of AOA.

参考文献/References:

[1]熊军,闫海锋,韦绍丽,等.木薯+花生间作对作物光合特性、农艺性状和产量的影响[J].江苏农业科学,2016,44(6):165-168.
[2]杨建波 , 彭东海, 覃刘东, 等. 低氮条件下间作大豆对宿根蔗内生固氮菌固氮酶活性、氮素积累及产量的影响[J].南方农业学报,2015,46(2):210-215.
[3]MARTIN R C, VOLDENG H D, SMITH D L. Intercropping corn and soybean for silage in a cool-temperature region: yield, protein and economic effects[J]. Field Crops Research, 1990, 23(3/4):295-310.
[4]MUYAYABANTU G M, KADIATA B D, NKONGOLO K K. Assessing the effects of integrated soil fertility management on biological efficiency and economic advantages of intercropped maize (Zea mays L.) and soybean (Glycine max L.) in DR Congo[J]. American Journal of Experimental Agriculture, 2013, 3(3):520-541.
[5]WANG G, SHENG L, ZHAO D, et al. Allocation of nitrogen and carbon is regulated by nodulation and mycorrhizal networks in soybean/maize intercropping system[J]. Frontiers in Plant Science, 2016, 7:1901.
[6]WAGG C, BENDER S F, WIDMER F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences, 2014, 111(14): 5266-5270.
[7]LI W, LI L, SUN J, et al. Effects of intercropping and nitrogen application on nitrate present in the profile of an Orthic Anthrosol in Northwest China[J]. Agriculture Ecosystems & Environment, 2005, 105(3):483-491.
[8]AAKRA , UTKER J B, NES I F, et al. An evaluated improvement of the extinction dilution method for isolation of ammonia-oxidizing bacteria[J]. Journal of Microbiological Methods, 1999, 39(1):23-31.
[9]PURKHOLD U, POMMERENING-RSER A, JURETSCHKO S, et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16 S rRNA and amoA sequence analysis: implications for molecular diversity surveys[J]. Applied and Environmental Microbiology, 2000, 66(12): 5368-5382.
[10]PROSSER J I, NICOL G W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment[J]. Environmental Microbiology, 2008, 10(11):2931-2941.
[11]PESTER M, RATTEI T, FLECHL S, et al. amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions[J]. Environmental Microbiology, 2012, 14(2):525-539.
[12]AVRAHAMI S, CONRAD R. Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures[J]. Applied and Environmental Microbiology, 2003, 69(10): 6152-6164.
[13]刘朝茂,李成云. 玉米与大豆间作对玉米叶片衰老的影响[J]. 江苏农业学报, 2017, 33(2):322-326.
[14]ROTTHAUWE J H, WITZEL K P, LIESACK W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Applied and Environmental Microbiology, 1997, 63(12): 4704-4712.
[15]FRANCIS C A, ROBERTS K J, BEMAN J M, et al. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean[J]. Proceedings of the National Academy of Sciences, 2005, 102(41):14683-14688.
[16]HE J Z, SHEN J P, ZHANG L M, et al. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices[J]. Environmental Microbiology, 2007, 9(9):2364-2374.
[17]FRANCIS C A, O'MULLAN G D, WARD B B. Diversity of ammonia monooxygenase(amoA) genes across environmental gradients in Chesapeake Bay sediments[J]. Geobiology, 2003, 1(2):129-140.
[18]SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23):7537-7541.
[19]张向前,黄国勤,卞新民,等. 间作对玉米品质、产量及土壤微生物数量和酶活性的影响[J]. 生态学报, 2012, 32(22):7082-7090.
[20]董晓钢,汤利,郑毅,等. 不同玉米大豆间作处理根系互作对根际微生物数量的影响[J]. 云南农业大学学报, 2015, 30(4):624-628.
[21]LEININGER S, URICH T, SCHLOTER M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442(7104):806-809.
[22]CHEN X P, ZHU Y G, XIA Y, et al. Ammonia‐oxidizing archaea: important players in paddy rhizosphere soil[J]. Environmental Microbiology, 2008, 10(8): 1978-1987.
[23]JIA Z, CONRAD R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil[J]. Environmental Microbiology, 2009, 11(7):1658-1671.
[24]DI H J, CAMERON K C, SHEN J P, et al. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils[J]. Nature Geosci, 2009, 2(9):621-624.
[25]VERHAMME D T, PROSSER J I, NICOL G W. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms[J]. The ISME Journal, 2011, 5(6): 1067.
[26]叶磊,祝贵兵,王雨,等. 白洋淀湖滨湿地岸边带氨氧化古菌与氨氧化细菌的分布特性[J]. 生态学报, 2011, 31(8):2209-2215.
[27]CHEN X, ZHANG L M, SHEN J P, et al. Abundance and community structure of ammonia-oxidizing archaea and bacteria in an acid paddy soil[J]. Biology and Fertility of Soils, 2011, 47(3): 323-331.
[28]LU L, HAN W, ZHANG J, et al. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea[J]. The ISME Journal, 2012, 6(10): 1978.
[29]HERRMANN M, SAUNDERS A M, SCHRAMM A. Archaea dominate the ammonia-oxidizing community in the rhizosphere of the freshwater macrophyte Littorella uniflora[J]. Applied and Environmental Microbiology, 2008, 74(10): 3279-3283.
[30]YAO H, GAO Y, NICOL G W, et al. Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils[J]. Applied and Environmental Microbiology, 2011, 77(13): 4618-4625.
[31]柴强,胡发龙,陈桂平. 禾豆间作氮素高效利用机理及农艺调控途径研究进展[J]. 中国生态农业学报, 2017, 25(1):19-26.
[32]何贵伦,罗明,韩剑,等. 枣树棉花间作与单作土壤氨氧化细菌amoA 基因多样性的比较与分析[J]. 新疆农业大学学报, 2015,38(2):126-135.
[33]WANG Y, KE X, WU L, et al. Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization[J]. Systematic and Applied Microbiology, 2009, 32(1): 27-36.
[34]SHEN J, ZHANG L, ZHU Y, et al. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam[J]. Environmental Microbiology, 2008, 10(6): 1601-1611.
[35]STEPHEN J R, MCCAIG A E, SMITH Z, et al. Molecular diversity of soil and marine 16 S rRNA gene sequences related to beta-subgroup ammonia-oxidizing bacteria[J]. Applied and Environmental Microbiology, 1996, 62(11): 4147-4154.
[36]CHEN G Y, QIU S L, ZHOU Y Y. Diversity and abundance of ammonia-oxidizing bacteria in eutrophic and oligotrophic basins of a shallow Chinese lake (Lake Donghu) [J]. Research in Microbiology, 2009, 160(3):173-178.

相似文献/References:

[1]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(06):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[2]何雅祺,王鑫鑫,张弛,等.间作、套种模式在中药材栽培中的效应研究进展[J].江苏农业学报,2021,(04):1077.[doi:doi:10.3969/j.issn.1000-4440.2021.04.034]
 HE Ya-qi,WANG Xin-xin,ZHANG Chi,et al.Research progress on the effects of intercropping and interplanting modes in the Cultivation of chinese medicinal materials[J].,2021,(06):1077.[doi:doi:10.3969/j.issn.1000-4440.2021.04.034]

备注/Memo

备注/Memo:
收稿日期:2017-06-07 基金项目:国家重点研发计划项目(2017YFD0200400);云南省林业一级学科项目(No.51600625) 作者简介:刘丽(1976-),女,黑龙江鹤岗人,硕士,高级实验师,主要从事植物相关微生物研究。(Tel)13987126283;(E-mail)cathly@126.com 通讯作者:李成云,(Tel)13708705575;(E-mail)licheng_yun@163.com
更新日期/Last Update: 2018-01-03