参考文献/References:
[1]赵玮,党占海,李闻娟. 强抗旱胡麻新品种陇亚11号组织培养技术优化研究[J]. 中国沙漠,2012,32(5):1355-1361.
[2]XIE D W, DAI Z G, YANG Z M, et al. Genomic variations and association study of agronomic traits in flax[J]. BMC Genomics,2018,19:1-12.
[3]BOGACHEV A A, GAVRILOVA N A, KURDYUKOV E E, et al. Comparative study of component and fatty-acid composition of flax seeds[J]. Food Chemistry,2020,310:125934.
[4]ZIETKIEWICZ E, RAFALSKI A, LABUDA D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification[J]. Genomics,1994,20(2):176-183.
[5]张雯丽. 中国特色油料产业高质量发展思路与对策[J]. 中国油料作物学报,2020,42(2):167-174.
[6]崔红艳,方子森,牛俊义. 胡麻栽培技术的研究进展[J]. 中国农学通报,2014,30(18):8-13.
[7]杨丽. 垄膜沟播垄沟宽对胡麻水分利用效率和产量的影响[J]. 灌溉排水学报,2019,38(10):17-25.
[8]李小燕,张雷,牛芬菊,等. 旱地组合型微垄全膜不同覆盖时期对土壤水分及胡麻生长的影响[J]. 干旱地区农业研究,2015,33(2):16-21.
[9]JEONG J H, RESOP J P, MUELLER N D, et al. Random forests for global and regional crop yield predictions[J]. PLoS One,2016,11(6):e0156571.
[10]严海军,卓越,李茂娜,等. 基于机器学习和无人机多光谱遥感的苜蓿产量预测[J]. 农业工程学报,2022,38(11):64-71.
[11]丛佳慧,田兴帅,赵向阳,等. 基于DSSAT模型和天气预报策略预测农户当季玉米产量[J]. 玉米科学,2022,30(4):62-72.
[12]郑昌玲,张蕾,侯英雨,等. 基于WOFOST模型的冬小麦产量动态预报方法[J]. 干旱地区农业研究,2022,40(6):242-250,267.
[13]RUGIMBANA C. Predicting maize (Zea mays) yields in eastern province of Rwanda using aquacrop model[D]. Nairobi:University of Nairobi,2019.
[14]SARKER I H. Deep learning:a comprehensive overview on techniques,taxonomy,applications and research directions[J]. SN computer science,2021,2(6):1-20.
[15]KHAKI S, WANG L Z, ARCHONTOULIS S V. A CNN-RNN framework for crop yield prediction[J]. Frontiers in Plant Science,2020,10:1750.
[16]于珍珍,邹华芬,于德水,等. 融合田间水热因子的甘蔗产量GA-BP预测模型[J]. 农业机械学报,2022,53(10):277-283.
[17]崔小茹,陈其鲜. 甘肃省胡麻生产现状及发展思路[J]. 甘肃农业,2014(11):3-4.
[18]栾振斌,宁和平,姚瑞,等. 1965—2015年甘肃省干旱时空分布特征分析[J]. 现代农业科技,2022(13):124-129.
[19]LI M Y, CAO S, ZHU Z C, et al. Spatiotemporally consistent global dataset of the GIMMS Normalized Difference Vegetation Index (PKU GIMMS NDVI) from 1982 to 2022[J]. Earth System Science Data,2023,15(9):4181-4203.
[20]郝洪涛,王凯,张炳建,等. 多尺度特征自适应融合的气动控制阀故障诊断[J]. 仪器仪表学报,2023,44(10):167-178.
[21]李笛,杨东,王文庆,等. 基于CNN-LSTM-Attention的工业控制系统网络入侵检测方法研究[J]. 热力发电,2024,53(5):115-121.
[22]兰小机,贺永兰,武帅文. 基于RF-BiLSTM模型的河流水质预测[J]. 长江科学院院报,2024,41(7):57-63,71.
[23]GRAVES A, SCHMIDHUBER J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Networks,2005,18(5/6):602-610.
[24]雷冰冰,韩镏,石佳圆,等. 基于CRITIC和多策略秃鹰优化BiLSTM的水质预测研究[J]. 安全与环境学报,2024,24(9):3688-3702.
[25]BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J/OL]. arXiv,2014.
[2024-10-03].https://doi.org/10.48550/arXiv.1409.0473.DOI:10.48550/arXiv.1409.0473.
[26] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//IEEE,CVF. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City:IEEE,2018.
[27]吴瑞香,杨建春. 主要气象因子与胡麻产量性状的相关性分析[J]. 耕作与栽培,2023,43(6):6-10.