参考文献/References:
[1]OLSSON V, JOOS L, ZHU S S, et al. Look closely,the beautiful may be small:precursor-derived peptides in plants[J]. Annual Review of Plant Biology,2019,70:153-186.
[2]MECCHIA M A, SANTOS-FERNANDEZ G, DUSS N N, et al. RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis[J]. Science,2017,358(6370):1600-1603.
[3]COVEY P A, SUBBAIAH C C, PARSONS R L, et al. A pollen-specific RALF from tomato that regulates pollen tube elongation[J]. Plant Physiology,2010,153(2):703-715.
[4]LI L X, CHEN H H, ALOTAIBI S S, et al. RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(31):2121058119.
[5]ZHONG S, LI L, WANG Z J, et al. RALF peptide signaling controls the polytubey block in Arabidopsis[J]. Science,2022,375(6578):290-296.
[6]ATKINSON N J, LILLEY C J, URWIN P E. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses[J]. Plant Physiology,2013,162(4):2028-2041.
[7]STEGMANN M, MONAGHAN J, SMAKOWSKA-LUZAN E, et al. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling[J]. Science,2017,355(6322):287-289.
[8]ZHAO C Z, JIANG W, ZAYED O, et al. The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones[J]. National Science Review,2020,8(1):nwaa149.
[9]JIANG W, LI C, LI L T, et al. Genome-wide analysis of CqCrRLK1L and CqRALF gene families in Chenopodium quinoa and their roles in salt stress response[J]. Frontiers in Plant Science,2022,13:918594.
[10]LAN Z J, SONG Z H, WANG Z J, et al. Antagonistic RALF peptides control an intergeneric hybridization barrier on Brassicaceae stigmas[J]. Cell,2023,186(22):4773-4787.
[11]陈敏,李海云,吕福堂. 植物耐盐性研究进展[J]. 聊城大学学报(自然科学版),2011,24(3):47-50.
[12]徐明,蒋学乾,何飞,等. 紫花苜蓿种子产量与大小相关性状全基因组关联分析[J]. 草地学报,2024,32(8):2419-2427.
[13]巴图. 苜蓿对盐胁迫的生理响应及抗盐调控措施研究[D]. 呼和浩特:内蒙古农业大学,2016.
[14]SHEN C, DU H L, CHEN Z, et al. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research[J]. Molecular Plant,2020,13(9):1250-1261.
[15]CHEN C J, CHEN H, ZHANG Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.
[16]WANG D P, ZHANG Y B, ZHANG Z, et al. KaKs_Calculator 2.0:a toolkit incorporating gamma-series methods and sliding window strategies[J].Genomics,Proteomics & Bioinformatics,2010,8(1):77-80.
[17]TAMURA K, STECHER G, KUMAR S. MEGA11:molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution,2021,38(7):3022-3027.
[18]BAILEY T L, BODEN M, BUSKE F A, et al. MEME SUITE:tools for motif discovery and searching[J]. Nucleic Acids Research,2009,37(7):202-208.
[19]GEOURJON C, DELAGE G. SOPMA:significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments[J]. Computer Applications in the Biosciences,1995,11(6):681-684.
[20]LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method[J]. Methods,2001,25(4):402-408.
[21]LIU Y H, CHEN Y H, JIANG H K, et al. Genome-wide characterization of soybean RALF genes and their expression responses to Fusarium oxysporum[J]. Frontiers in Plant Science,2022,13:1006028.
[22]SUI J L, XIAO X H, YANG J H, et al. The rubber tree RALF peptide hormone and its receptor protein kinase FER implicates in rubber production[J]. Plant Science,2023,326:111510.
[23]XUE B P, LIANG Z C, LIU Y, et al. Genome-wide identification of the RALF gene family and expression pattern analysis in Zea mays L. under abiotic stresses[J]. Plants,2024,13(20):2883.
[24]ZHANG H, JING X T, CHEN Y, et al. The genome-wide analysis of RALF-like genes in strawberry (wild and cultivated) and five other plant species (Rosaceae)[J]. Genes,2020,11(2):174.
[25]JIA Y C, LI Y G. Genome-wide identification and comparative analysis of RALF gene family in legume and non-legume species[J]. International Journal of Molecular Sciences,2023,24(10):8842.
[26]MOUSSU S, BROYART C, SANTOS-FERNANDEZ G, et al. Structural basis for recognition of RALF peptides by LRX proteins during pollen tube growth[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(13):7494-7503.
[27]梁宇尧,钟昌桦,潘若云,等. 百香果CBF基因家族鉴定与表达分析[J]. 江苏农业科学,2024, 52(10):55-61.
[28]江定,李光光,袁凡崇,等. 菜心响应高温胁迫的转录组分析与基因挖掘[J]. 南方农业学报,2024,55(3):766-783.
[29]刘芳,段盼盼,魏敏,等. 辣椒CUL家族基因的鉴定与表达分析[J]. 江苏农业学报, 2023,39(6):1275-1285.
[30]李远超,李可,王连南,等. 木薯根组织特异性启动子的克隆及鉴定[J]. 南方农业学报,2023,54(7):1925-1932.
[31]JING H W, WILKINSON E G, SAGEMAN-FURNAS K, et al. Auxin and abiotic stress responses[J]. Journal of Experimental Botany,2023,74(22):7000-7014.
[32]WANG Y, GONG X W, LIU W K, et al. Gibberellin mediates spermidine-induced salt tolerance and the expression of GT-3b in cucumber[J]. Plant Physiology and Biochemistry,2020,152:147-156.
[33]WANG Y, MOSTAFA S, ZENG W, et al. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses[J]. International Journal of Molecular Sciences,2021,22(16):8568.
[34]NAKASHIMA K, YAMAGUCHI-SHINOZAKI K. ABA signaling in stress-response and seed development[J]. Plant Cell Reports,2013,32(7):959-970.
[35]VISHAL B, KUMAR P P. Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid[J]. Frontiers in Plant Science,2018,9:838.
[36]ZHAO H X, YAO P F, ZHAO J L, et al. A novel R2R3-MYB transcription factor FtMYB22 negatively regulates salt and drought stress through ABA-dependent pathway[J]. International Journal of Molecular Sciences,2022,23(23):14549.