[1]王江英,葛金涛,邵小斌,等.筛选白花油茶胚性愈伤组织诱导成苗的关键激素通路及相关基因[J].江苏农业学报,2025,(03):599-614.[doi:doi:10.3969/j.issn.1000-4440.2025.03.019]
 WANG Jiangying,GE Jintao,SHAO Xiaobin,et al.Screening of key hormone pathways and related genes for the induction of plantlets from embryogenic callus of Camellia oleifera[J].,2025,(03):599-614.[doi:doi:10.3969/j.issn.1000-4440.2025.03.019]
点击复制

筛选白花油茶胚性愈伤组织诱导成苗的关键激素通路及相关基因()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年03期
页码:
599-614
栏目:
园艺
出版日期:
2025-03-31

文章信息/Info

Title:
Screening of key hormone pathways and related genes for the induction of plantlets from embryogenic callus of Camellia oleifera
作者:
王江英葛金涛邵小斌朱朋波孙明伟赵统利汤雪燕
(连云港市农业科学院休闲农业研究室,江苏连云港222000)
Author(s):
WANG JiangyingGE JintaoSHAO XiaobinZHU PengboSUN MingweiZHAO TongliTANG Xueyan
(Leisure Agriculture Laboratory of Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China)
关键词:
油茶植物激素植株再生代谢组转录组差异代谢物差异表达基因
Keywords:
Camellia oleiferaplant hormonesplant regenerationmetabolometranscriptomedifferential accumulated metabolitesdifferentially expressed genes
分类号:
S794.4
DOI:
doi:10.3969/j.issn.1000-4440.2025.03.019
文献标志码:
A
摘要:
植物激素在植物无性繁殖器官再生中发挥着关键作用,本研究探究白花油茶再生过程中激素调控机理,为加速山茶属植物再生及遗传转化提供理论基础。本研究采用综合代谢组学-转录组学分析方法,筛选出白花油茶胚性愈伤组织诱导及分化成苗5个阶段(S1~S5)中植物激素相关的差异代谢物(DAMs)和编码关键代谢酶的差异表达基因(DEGs)。液相色谱-质谱(LC-MS)分析结果显示,在S1~S5共获得51种激素相关差异代谢物;通过Illumina HiSeq测序,共发现与植物激素相关的54个差异表达基因,其中21个差异表达基因作用于植物激素信号转导通路中,33个差异表达基因参与激素合成代谢。此外,KEGG富集分析结果表明,在白花油茶植物再生过程中,相比于其他激素,生长素、细胞分裂素和水杨酸的调控作用较为明显,激素含量分析结果表明,生长素和水杨酸的平均含量分别高达细胞分裂素的18.81倍和201.94倍,而赤霉素等其他激素仅为细胞分裂素的2%~27%;同时差异表达基因也显著表达在生长素、细胞分裂素和水杨酸的合成途径中。研究以上3种激素合成途径中的DAMs和DEGs之间的通路关系发现,在KEGG通路中共富集到8种差异代谢物,包括吲哚、L-色氨酸、色胺、吲哚-3-乙酸、玉米素核苷、反式-玉米素-9-β-葡萄糖苷、异戊烯腺嘌呤核苷、L-苯丙氨酸;18个差异表达基因,包括ALDH、TAA1、COMT、IPT、TRIT1、CKX、PAT和PAL等。对其他内源激素的进一步分析结果表明,赤霉素、脱落酸和茉莉酸在油茶再生过程中含量较低,生长素和水杨酸平均含量分别高达赤霉素的757倍和8 130倍;同时KEGG富集了15个差异表达基因,包括KAO、GA2ox、ZEP及OPR等,这些基因在再生过程中与ALDH等18个基因发挥着相互作用。
Abstract:
Plant hormones are crucial for the regeneration of plant’s asexual reproductive organs. The purpose of this study is to explore the mechanism of hormone regulation in the regeneration process of Camellia oleifera, and to provide a theoretical basis for accelerating the regeneration and genetic transformation of Camellia plants. In this research, an integrated metabolomic-transcriptomic analysis was employed to screen out the plant hormone-related differential accumulated metabolites (DAMs) and differentially expressed genes (DEGs) encoding key metabolic enzymes in five stages (S1, S2, S3, S4, S5) of embryogenic callus induction and differentiation into seedlings of Camellia oleifera. The results of liquid chromatography-mass spectrometry (LC-MS) analysis showed that a total of 51 hormone-related differential metabolites were obtained from S1 to S5. Through Illumina HiSeq sequencing, a total of 54 differentially expressed genes related to plant hormones were found, of which 21 differentially expressed genes acted on plant hormone signal transduction pathways, and 33 differentially expressed genes were involved in hormone synthesis and metabolism. In addition, the results of KEGG enrichment analysis indicated that the regulation of auxin, cytokinin and salicylic acid was more obvious than that of other hormones in the regeneration process of Camellia oleifera. The results of hormone content analysis revealed that the average contents of auxin and salicylic acid were as high as 18.81 times and 201.94 times of cytokinin, respectively, while the average contents of other hormones such as gibberellin were only 2%-27% of the average content of cytokinin. At the same time, the differentially expressed genes were also significantly expressed in the synthesis pathways of auxin, cytokinin and salicylic acid. By studying the pathway relationships between DAMs and DEGs in the above three hormone synthesis pathways, it was found that eight differential metabolites (such as indole, L-tryptophan, tryptamine, indole-3-acetic acid, zeatin nucleoside, trans-zeatin-9-β-glucoside, isopentenyladenosine, L-phenylalanine) and 18 differentially expressed genes (ALDH, TAA1, COMT, IPT, TRIT1, CKX, PAT and PAL, etc.) were enriched in the KEGG pathway. Further analysis of other endogenous hormones showed that the contents of gibberellin, abscisic acid and jasmonic acid were low in the regeneration process of Camellia oleifera, and the average contents of auxin and salicylic acid were as high as 757 times and 8 130 times of gibberellin. At the same time, KEGG enriched 15 differentially expressed genes, including KAO, GA2ox, ZEP and OPR. These genes interacted with 18 genes such as ALDH during regeneration.

参考文献/References:

[1]王瑞,陈永忠,王湘南,等. 油茶组培苗高效增殖体系的建立[J]. 中南林业科技大学学报,2015,35(10):40-43.
[2]陈永忠,杨小胡,彭邵锋,等. 我国油茶良种选育研究现状及发展策略[J]. 林业科技开发,2005,19(4):1-4.
[3]曹孜义,刘国民. 实用植物组织培养技术教程[M]. 兰州:甘肃科学技术出版社,2003:9-12.
[4]ROSA Y, BELLO C, DORNELAS M. Species-dependent divergent responses to in vitro somatic embryo induction in Passiflora spp.[J]. Plant Cell,Tissue and Organ Culture,2015,120(1):69-77.
[5]NORDINE A, TLEMCANI C R, EI-MESKAOUI A. Regeneration of plants through somatic embryogenesis in Thymus hyemalis Lange,a potential medicinal and aromatic plant [J]. In Vitro Cellular & Development Biology-Plant,2014,50(1):19-25.
[6]段 娜,贾玉奎,徐 军,等. 植物内源激素研究进展[J]. 中国农学通报,2015,31(2):159-165.
[7]王小菁,陈刚. 植物生长调节剂在植物组织培养中的应用[M]. 2版.北京:化学工业出版社,2010.
[8]ATTA R, LAURENS L, ELODIE B D, et al. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro [J]. The Plant Journal,2009,57(4):626-644.
[9]KAREEN A, DURGAPRASAD K, SUGIMOTO K, et al. PLETHORA genes control regeneration by a two-step mechanism [J]. Current Biology,2015,25(8):1017-1030.
[10]PINON V, PRASAD K, GRIGG S P, et al. Local auxin biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in Arabidopsis[J]. Proceedings of the National Academy of Sciences,2013,110(3):1107-1112.
[11]BRAYBROOK S A, HARAD J J. LECs go crazy in embryo development[J]. Trends in Plant Science,2008,13(12):624-630.
[12]HORSTMAN A, LI M F, HEIDMANN I, et al. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis [J]. Plant Physiology,2017,175(2):848-857.
[13]TOONEN M A J, HENDRIKS T, SCHMIDT E D L, et al. Description of somatic-embryo-forming single cells in carrot suspension cultures employing video cell tracking[J]. Planta,1994,194(4):565-572.
[14]RIOU-KHAMLICHI C, HUNTLEY R, JACQMARD A, et al. Cytokinin activation of Arabidopsis cell division through a D-type cyclin [J]. Science,1999,283(5407):1541-1544.
[15]IKEDA Y, BANNO H, NIU Q W, et al. The enhancer of shoot regeneration 2 gene in Arabidopsis regulates cup-shaped cotyledon 1 at the transcriptional level and controls cotyledon development[J]. Plant & Cell Physiology,2006,47(11):1443-1456.
[16]WANG J, TIAN C H, ZHANG C, et al. Cytokinin signaling activates WUSCHEL expression during axillary meristem initiation[J]. The Plant Cell,2017,29(6):1373-1387.
[17]ZUBO Y O, BLAKLEY I C, YAMBURENKO M V, et al. Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(29):E5995-E6004.
[18]HUANG Y, WANG X, GE S, et al. Divergence and adaptive evolution of the gibberellin oxidase genes in plants [J]. BMC Evolutionary Biology,2015,15(1):207-221.
[19]WANG J Y, WU B, LI J Y, et al. Overexpression and silent expression of CrGA20ox1 from Camellia reticulata ‘Hentiangao’ and its effect on morphological alterations in transgenic tobacco plants[J]. Plant Breeding,2018,137(6):903-911.
[20]张庆瑞,孙建洲,任凝辉,等. 芍药组织培养技术研究[J]. 河南农业科学,2006,35(4):88-90.
[21]高朋飞. 层积时间和赤霉素浓度对暴马丁香组织培养的影响[D]. 沈阳:沈阳农业大学,2022 :24-30.
[22]黎家,李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学:生命科学,2019,49(10):1227-1281.
[23]李玉珠,余江弟,丁菲菲,等. 植物遗传转化中体细胞再生的分子机制及应用研究进展[J]. 草业学报,2024,33(2):197-210.
[24]DAIMON Y, TAKABE K, TASAKA M. The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli[J]. Plant & Cell Physiology,2003,44(2):113-121.
[25]KUNKEL T, NIU Q W, CHAN Y S, et al. Inducible isopentenyl transferase as a high-efficiency marker for plant transformation [J]. Nature Biotechnology,1999,17(9):916-919.
[26]王江英,汤雪燕,葛金涛,等. 白花油茶胚性愈伤诱导及植株再生[J]. 浙江农业科学,2023,64(4):841-845.
[27]王江英,朱朋波,汤雪燕,等. 外源赤霉素诱导矮生山茶恨天高植株生长的转录组分析[J]. 江苏农业学报,2020,36(1):47-56.
[28]MONDAL T K, BHATTACHARYA A, AHUJA P S. Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium-mediated transformation of somatic embryos [J]. Plant Cell Reports,2001,20(8):712-720.
[29]谢从华,柳俊. 植物细胞工程[M]. 北京:高等教育出版社,2004 :24-39.
[30]FATTORINI L, HAUSE B, GUTIERREZ L, et al. Jasmonate promotes auxin-induced adventitious rooting in dark-grown Arabidopsis thaliana seedlings and stem thin cell layers by a cross-talk with ethylene signalling and a modulation of xylogenesis [J]. BMC Plant Biology,2018,18(1):182.
[31]TRAN S, ISON M, FERREIRA-DIAS N C, et al. Endogenous salicylic acid suppresses de novo root regeneration from leaf explants [J]. PLoS Genetics,2023,19(3):e1010636.
[32]国少旭,徐子莲,田亚丽,等. 盐肤木非胚性愈伤组织与胚性愈伤组织的比较转录组分析[J/OL]. 分子植物育种,2023:1-12.
[2024-03-01].http://kns.cnki.net/kcms/detail/46.1068.S.20230801.1405.005.html.
[33]WANG Y L, HE S J, LONG Y, et al. Genetic variations in ZmSAUR15 contribute to the formation of immature embryo-derived embryonic calluses in maize[J]. The Plant Journal,2022,109(4):980-991.
[34]HIGUCHI M, PISCHKE M S, MHNENA P, et al. In planta functions of the Arabidopsis cytokinin receptor family [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(23):8821-8826.
[35]IKEUCHI M, OGAWA Y, IWASE A, et al. Plant regeneration:cellular origins and molecular mechanisms[J]. Development,2016,143(9):1442-1451.
[36]IKEUCHI M, IWASE A, RYMEN B, et al. Wounding triggers callus formation via dynamic hormonal and transcriptional changes[J]. Plant Physiology,2017,175(3):1158-1174.
[37]IWASE A, MITSUDA N, KOYAMA T, et al. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis[J]. Current Biology,2011,21(6):508-514.
[38]何文英,张欢,胡明华,等. 基于转录组的金钱树扦插激素相关基因差异表达分析[J/OL]. 分子植物育种,2023:1-15.
[2024-03-01]. http://link.cnki.net/urlid/46.1068.S.20230822.1438.006.

相似文献/References:

[1]佚名 佚名 佚名.三才期刊采编系统文章正在整理中…[J].江苏农业学报,2005,(01):61.
 XU De Bing,CHEN Fu,ZHANG Lin tao,et al.三才期刊采编系统文章正在整理中…[J].,2005,(03):61.
[2]佚名 佚名 佚名.三才期刊采编系统文章正在整理中…[J].江苏农业学报,2006,(01):61.
 XU De Bing,CHEN Fu,ZHANG Lin tao,et al.三才期刊采编系统文章正在整理中…[J].,2006,(03):61.
[3]罗汉东,王华,付艳秋,等.油茶果实性状、养分含量和产油量对磷水平的响应[J].江苏农业学报,2016,(04):898.[doi:10.3969/j.issn.100-4440.2016.04.029]
 LUO Han-dong,WANG Hua,FU Yan-qiu,et al.Fruit traits, nutrient content and oil content of Camellia oleifera in response to phosphorus levels[J].,2016,(03):898.[doi:10.3969/j.issn.100-4440.2016.04.029]
[4]刘强,柳正葳,刘召亮,等.一氧化氮对铝胁迫下烟草根系营养元素吸收和呼吸电子传递及内源激素含量的影响[J].江苏农业学报,2020,(02):292.[doi:doi:10.3969/j.issn.1000-4440.2020.02.006]
 LIU Qiang,LIU Zheng-wei,LIU Zhao-liang,et al.Effects of nitric oxide on nutrient uptake, respiratory electron transfer and endogenous phytohormones contents in roots of tobacco seedlings under aluminum stress[J].,2020,(03):292.[doi:doi:10.3969/j.issn.1000-4440.2020.02.006]
[5]戴毅,田龙果,潘贞志,等.激素和非生物逆境胁迫调控植物硝酸盐转运蛋白功能的研究进展[J].江苏农业学报,2020,(06):1595.[doi:doi:10.3969/j.issn.1000-4440.2020.06.033]
 DAI Yi,TIAN Long-guo,PAN Zhen-zhi,et al.Research progress on the regulation of plant nitrate transporter functions by hormones and abiotic stress[J].,2020,(03):1595.[doi:doi:10.3969/j.issn.1000-4440.2020.06.033]

备注/Memo

备注/Memo:
收稿日期:2024-04-30基金项目:连云港市财政专项(QNJJ2104)作者简介:王江英(1984-),女,江苏泰州人,博士,副研究员,主要从事花卉分子育种研究。(E-mail)wangjiangying3401@163.com通讯作者:汤雪燕,(E-mail)3202txy@163.com
更新日期/Last Update: 2025-04-27